Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Особенности оценки параметров нелинейных моделей





 

Соотношение между социально-экономическими явлениями и процессами далеко не всегда можно выразить линейными функциями. Так, нелинейными оказываются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства – трудом, капиталом и т. д.), функции спроса (зависимость между спросом на товары, услуги и их ценами или доходом) и др.

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Нелинейность может проявляться как относительно переменных, так и относительно входящих в функцию коэффициентов (параметров).

Различают два класса нелинейных регрессий

Для оценки параметров нелинейных моделей используются два подхода.

Первый подход основан на линеаризации модели и заключается в том, что с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными.

Второй подход обычно применяют в случаях, когда подобрать соответствующее линеаризующее преобразование не удается. Тогда использует методы нелинейной оптимизации на основе исходных переменных.

Применяемые чаще всего в экономическом анализе виды нелинейных регрессий следующие: полином второго порядка, гипербола, степенная функция и показательная функция.

Однако параметров нелинейной регрессии по переменным, включенным в анализ, но линейным по оцениваемым параметрам, проводиться с помощью МНК путем решения нормальных уравнений.

Регрессии, нелинейные по переменным, но линейные по оцениваемым параметрам:

1. полином второго порядка ŷx = a0 + a1xi + a2xi2 (3.25)

Нормальные уравнения:

;

; (3.26)

.

 

2. гипербола ŷx = a0 + a1 (3.27)

Нормальные уравнения

;

. (3.28)

Или заменим 1/ xi на новую переменную X. В результате получим линейное уравнение:

Ŷx = a0 +a1X. (3.29)

Параметры определяются из следующих формул:

a0 = (3.30)

Линеаризация регрессий, нелинейных по оцениваемым параметрам:

1. степенная функция ŷx (3.31)

Для определения параметров степенной функции с помощью МНК необходимо привести ее к линейному виду путем логарифмирования обеих частей уравнения:

ln ŷx (3.32)

Это уравнение представляет собой прямую линию на графике, по осям которого откладываются не сами числа, а их логарифмы (так называемая логарифмическая школа или логарифмическая сетка).

Пусть Y=ln ŷx, X=ln xi, A=ln a0. Тогда уравнение примет вид

Y = A + a1X (3.33)

Параметры модели определяются по следующим формулам:

(3.34)

2. показательная функция

ŷx (3.35)

Линеаризацию переменных проведем путем логарифмирования обеих частей уравнения:

ln ŷx = (3.36)

Уравнение изображается прямой линией на полулогарифмической сетке, которая получается как сочетание натуральной шкалы для значения независимой переменной х и логарифмической шкалы – для значения зависимой переменной у.

Пусть Y = ln ŷx, A = ln a0, B =ln a1. Тогда уравнение примет вид

(3.37)

Параметры модели определяются по следующим формулам:

(3.38)

При использовании любой формы криволинейной корреля­ционной зависимости теснота связи между переменными может быть измерена с помощью индекса корреляции, который опреде­ляется аналогично коэффициенту корреляции для линейной формы связи.

Уравнение корреляционной связи должно быть по возмож­ности более простым, чтобы сущность изучаемой зависимости между переменными проявлялась достаточно четко, а параметры уравнения поддавались определенному экономическому толкованию. Вопрос выбора соответствующего уравнения связи решается в каждом случае отдельно.

3. Методика построения модели парной регрессии

По пятнадцати сельскохозяйственным предприятиям Орловской области за 200х г. известны значения двух признаков:

Таблица 3.1. – Исходные данные для анализа

Валовой доход отрасли растениеводства, приходящийся на 100 га пашни (тыс. руб.) Затраты труда в растениеводстве на 100 га пашни, тыс. чел.-час./га
  111,03 1,94
  128,90 3,45
  120,31 1,83
  112,54 2,78
  93,13 1,68
  64,82 2,55
  107,75 2,37
  211,15 4,10
  103,97 3,20
  199,31 3,40
  138,95 3,42
  105,81 2,80
  88,15 3,24
  121,25 2,45
  105,62 2,27
Итого 1812,68 41,48
Среднее 120,85 2,74

Требуется:

1. Вычислить описательные статистики. Проверить характер распределения признаков. При необходимости удалить аномальные наблюдения.

2. Построить поле корреляции. Выдвинуть гипотезу о форме связи признаков.

3. Для характеристики зависимости у от х:

а) построить линейное уравнение парной регрессии у от х;

б) дать экономическую интерпретацию уравнению регрессии исчислив средний коэффициент эластичности , парный линейный коэффициент корреляции – r, коэффициент детерминации – D;

в) оценить полученную модель через среднюю ошибку аппроксимации и F-критерий Фишера и сделать вывод;

г) провести статистическую оценку значимости коэффициентов регрессии и корреляции (с помощью t-статистики Стьюдента и путем расчета доверительного интервала каждого из показателей).

4) Рассчитать параметры регрессии, построенной по уравнению равносторонней гиперболы. Оценить полученную модель через среднюю ошибку аппроксимации и F-критерий Фишера, сделать вывод.

5) Рассчитать параметры степенной регрессионной модели. Оценить полученную модель через среднюю ошибку аппроксимации и F-критерий Фишера, сделать вывод.

6). Обосновано выбрать лучшую модель и рассчитать по ней прогнозное значение результата, если прогнозное значение фактора увеличится на 25% от среднего уровня. Определить доверительный интервал прогноза при уровне значимости α = 0,05.

Порядок выполнения:

Для нашего примера:

Y – Валовой доход отрасли растениеводства, приходящийся на 100 га пашни (тыс. руб.) (результативный признак);

Х – Затраты труда в растениеводстве на 100 га пашни, тыс. чел.-час./га (факторный признак).

Прежде чем приступить непосредственно к анализу, необходимо проверить выполнение трех основных условий применения корреляционно-регрессионного анализа.

1) 1.1.Проверим, насколько для данной совокупности действует Закон больших чисел. В данном случае рекомендуется отобрать из генеральной совокупности с помощью случайной бесповторной выборки как минимум 10 объектов для исследования (число наблюдений должно хотя бы в 10 раз превышать количество факторных признаков в модели). Данное правило соблюдено. Зависимость изучается по данным 15 предприятий.

1.2. Проверим характер распределения. Для этого рассчитаем среднее квадратическое отклонение (σ) и коэффициент вариации (v) для каждого из показателей по формулам:

(1)

(2)

(3)

По исходным данным рассчитаем X2, Y2, ΣX2, ΣY2(таблица 3.2) Рассчитаем среднее квадратическое отклонение для каждого из признаков:

Таблица 3.2. - Расчетные величины, необходимые для определения среднего квадратического отклонения и коэффициента вариации

Х, тыс. чел.-час./га У, (тыс. руб.) Расчетные величины
  1,94 111,03 3,7751 12327,8885 215,7293
  3,45 128,90 11,8829 16614,7449 444,3333
  1,83 120,31 3,3334 14473,8934 219,6517
  2,27 105,62 5,1705 11156,0468 240,1704
Итого 41,48 1812,68 121,4840 239812,3499 5240,1270
Среднее знач. 2,77 120,85 8,0989 15987,4900 349,3418

Рассчитаем среднее квадратическое отклонение по получившимся данным для каждого из признаков

Рассчитаем коэффициент вариации для каждого из признаков:

Поскольку коэффициенты вариации по каждому из признаков не превышают значения 0,35, то может сделать вывод об однородности изучаемой совокупности.

1.3. Для применения метода наименьших квадратов при нахождении параметров уравнения регрессии необходимо, чтобы распределение по результативному признаку подчинялось нормальному закону.

Проверить распределение на нормальность можно путем расчета показателей асимметрии первого, второго и третьего порядков и показатель эксцесса.

При нормальном распределении вариационный укладывается в границы ± 3σ; размах вариации R = 6σ. Это означает, что при нормальном распределении вероятность попадания единичного наблюдения в интервал ± 3σ равна 0,997. Величину 3σ считают максимально допустимой ошибкой и отбрасывают результаты экспериментов, для которых величина отклонения от среднего превышает это значение («правило 3 сигм»).

 

Rу =211,15-64,82 = 146,33 ц/га; Rу < 223,14.

Mo=111,03 тыс. руб.;

Me=111,03 тыс. руб.;

Рассчитаем асимметрию первого порядка:

 

Таблица 3.3. – Расчетные величины

№ хозяйства У (тыс. руб.) Расчетные величины
  64,82 -56,0237 3138,6517 -175838,7919 9851134,6449
  88,15 -32,6964 1069,0538 -34954,1956 1142875,9206
  93,13 -27,7167 768,2136 -21292,3203 590152,1421
  103,97 -16,8769 284,8314 -4807,0856 81128,9418
  105,62 -15,2230 231,7388 -3527,7525 53702,8682
  105,81 -15,0382 226,1472 -3400,8438 51142,5346
  107,75 -13,0948 171,4733 -2245,4050 29403,0864
  111,03 -9,8141 96,3172 -945,2700 9277,0058
  112,54 -8,3011 68,9085 -572,0171 4748,3784
  120,31 -0,5377 0,2891 -0,1554 0,0836
  121,25 0,4040 0,1632 0,0660 0,0266
  128,90 8,0530 64,8514 522,2509 4205,7062
  138,95 18,1014 327,6607 5931,1179 107361,5426
  199,31 78,4611 6156,1474 483018,2164 37898150,2459
  211,15 90,3029 8154,6189 736385,9636 66497808,9091
Итого 1812,68 0,0000 20759,0661 978273,7774 116321092,0368
Среднее 120,85 х х х х

 

Асимметрия второго порядка рассчитывается по формулам:

Рассчитаем асимметрию третьего порядка:

Найдем значение эксцесса:

Полученные данные позволяют сделать следующий вывод. Значения асимметрии первого, второго, третьего порядков и эксцесса достаточно малы, мода, медиана и среднее значение результативного признака приближенно равны, следовательно, совокупность подчиняется нормальному закону и для нахождения параметров уравнения регрессии применим Метод наименьших квадратов (МНК).







Дата добавления: 2015-08-12; просмотров: 993. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия