Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Степенная модель.





Уравнение степенной модели имеет вид:

Данная функция нелинейна относительно параметров, но линейна по переменным. Прежде, чем проводить анализ необходимо перейти от нелинейной формы к линейной. В регрессиях нелинейных относительно параметров процедура линеаризации (аноморфоза) производится путем логарифмирования обеих частей уравнения:

Введем замену:

Вновь полученное уравнение будет иметь вид:

Найдем среднее квадратическое отклонение по L:

Таблица 3.7. – Расчетные величины, необходимые для определения параметров уравнения

№ хозяйства
  0,2885 2,0454 0,0832 4,1838 0,5900
  0,5375 2,1102 0,2889 4,4531 1,1342
  0,2614 2,0803 0,0684 4,3276 0,5439
  0,4446 2,0513 0,1977 4,2079 0,9120
  0,3568 2,0238 0,1273 4,0956 0,7220
Итого 6,4241 30,9615 2,9315 64,1339 13,3599
Среднее 0,4283 2,0641 0,1954 4,2756 0,8907

Для расчета параметров уравнения регрессии воспользуемся готовыми формулами:

Уравнение принимает вид:

Проведем потенцирование полученного уравнения:

Коэффициент эластичности рассчитывается по формуле:

С увеличением затрат труда в растениеводстве на 1 % от своего среднего значения валовой доход отрасли увеличивается в среднем на 0,56 %.

Рисунок 3.3. – Влияние затрат труда в растениеводстве на валовой доход отрасли (степенная модель)

Для расчета индекса корреляции выполним вспомогательные расчеты (таблица 3.8).

Индекс корреляции показывает, что связь между затратами труда в растениеводстве и валовым доходом отрасли заметная. По индексу корреляции нельзя судить о направлении связи.

Коэффициент детерминации рассчитаем по формуле:

Таблица 3.8. – Расчетные величины, необходимые для расчета индекса корреляции и определения показателей аппроксимации

Х, тыс. чел.час./га У, тыс. руб. Расчетные величины
  1,94 111,03 96,9570 0,0195 0,0024 198,0780 12,6758
  3,45 128,90 133,244 0,0119 0,0006 18,8873 3,3716
  1,83 120,31 93,6688 0,0278 0,0098 709,6197 22,1422
  2,78 112,54 118,348 0,0003 0,0010 33,6965 5,1579
  2,27 105,62 105,791 0,0051 0,0001 0,0287 0,1604
Итого 41,5 1812,7 1755,44 0,1802 0,1721 14464,83 280,9564
Сред. 2,77 120,85 117,029 х х х 18,7304

 

Следовательно, вариация валового дохода отрасли растениеводства на 30% объясняется вариацией затрат труда в растениеводстве, а остальные 70% вариации валового дохода отрасли обусловлены изменением других, не учтенных в модели факторов.

Средняя ошибка аппроксимации равна 18,7%. т.е. в среднем расчетные значения валового дохода отрасли растениеводства, приходящийся на 100 га пашни, отличаются от фактических на 18,7%, что не входит в допустимый предел. Данная модель имеет наименьшую ошибку аппроксимации.

Оценим модель через F-критерий Фишера. Выдвинем H0 о статистической незначимости полученного уравнения регрессии и показателя тесноты связи.

Сравним фактическое значение F-критерия с табличным. Для этого выпишем из таблицы «Значения F-Фишера при уровне значимости α=0,05» табличное значение.

Так как Fфакт>Fтабл,то при заданном уровне вероятности α=0,05 следует отвергнуть нулевую гипотезу о статистической незначимости уравнения регрессии и показателя тесноты связи.

Полученные оценки позволяют использовать данное уравнение для прогноза.

8. Выберем наиболее подходящую для прогнозирования модель.

Линейная модель имеет наибольшее значение коэффициента детерминации. Кроме того, данная модель значима по F-критерию Фишера. Выполним прогнозирование размера величины валового дохода отрасли растениеводства по уравнению прямой линии.

Найдем прогнозное значение факторного признака, составляющего 125% от его среднего уровня:

Выполним прогноз значения результативного признака (точечный прогноз):

Оценим точность прогноза.

Рассчитаем случайную ошибку прогноза:

Предельная ошибка прогноза, которая в 95% случаев не будет превышена, рассчитывается следующим образом:

С вероятностью 95% можно утверждать, что прогнозируемое значение результативного признаканаходится в пределах:

22,8786< Yp <266,2452

Выполненный прогноз Валового дохода оказался надежным (p = 1-α = 1-0,005 = 0,95), но неточным, так как диапазон верхней и нижней границ доверительного интервала составляет 11,6 раза: = 233.35/162.15=11,6.

Вопросы для самоконтроля:

1. Раскройте методику вычисления параметров парного линейного уравнения регрессии.

2. Поясните смысл коэффициента регрессии, назовите способы его оценивания, покажите, как он используется для расчета мультипликатора в функции потребления.

3. Что такое число степеней свободы и как оно определяется для факторной и остаточной сумм квадратов?

4. Какова концепция F-критерия Фишера?

5. Как оценивается значимость параметров уравнения регрессии?

6. В чем отличие стандартной ошибки положения линии регрессии от средней ошибки прогнозируемого индивидуального значения результативного признака при заданном значении фактора?

7. Какой нелинейной функцией может быть заменена парабола второй степени, если не наблюдается смена направленности связи признаков?

8. Запишите все виды моделей, нелинейных относительно:
включаемых переменных;
оцениваемых параметров.

9. В чем отличие применения МНК к моделям, нелинейным относительно включаемых переменных и оцениваемых параметров?

10. Как определяются коэффициенты эластичности по разным видам регрессионных моделей?

11. Назовите показатели корреляции, используемые при нелинейных соотношениях рассматриваемых признаков.

12. Перечислите особенности сельскохозяйственного производства, его анализа и моделирования.

13. Назовите основные типы нелинейных регрессионных моделей, применяемые в сельскохозяйственном производстве.

14. Возможность применение регрессионных моделей в прогнозировании и в анализе хозяйственной деятельности

 







Дата добавления: 2015-08-12; просмотров: 713. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия