Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейная модель.





3. Уравнение однофакторной (парной) линейной регрессии имеет вид:

Для нашего примера:

Y – Валовой доход отрасли растениеводства, приходящийся на 100 га пашни (тыс. руб.) (результативный признак);

Х – Затраты труда в растениеводстве на 100 га пашни, тыс. чел.-час./га (факторный признак).

Для нахождения параметров a и b линейной регрессии можно решить систему нормальных уравнений относительно a и b.

Для расчета параметров уравнения регрессии можно также воспользоваться готовыми формулами, полученными путем преобразования уравнений системы:

Уравнение принимает вид:

Рисунок 3.1.– Влияние затрат труда в растениеводстве на валовой доход отрасли (линейная модель)

Полученное уравнение называется уравнением регрессии, которое характеризует зависимость Валового дохода (у) от затрат труда (х). Коэффициент 34,2 стоящий перед х, называется коэффициентом регрессии. По знаку этого коэффициента судят о направлении связи. Если знак «+» – связь прямая; «-» – связь обратная. Величина коэффициента регрессии показывает, на сколько в среднем изменится величина результативного признака у при изменении факторного признака х на единицу. В данном случае с увеличением затрат труда на 1 чел.-час./га валовой доход увеличивается в среднем на 34,2 тыс. руб.

 

Подставляя в полученное уравнение регрессии значения xi из исходных данных определяем теоретические (выровненные) значения результативного признака:

26+34,24·1,94=92,5313, ц/га;

26+34,24·3,45=144,4368, ц/га;

26+34,24·1,83=88,6179, ц/га и т.д.

Результаты занесем в табл.3.4.

Контроль правильности расчетов:

4) Коэффициент регрессии применяется для расчета среднего коэффициента эластичности, который показывает: на сколько процентов в среднем по совокупности изменится результат Y от своей средней величины при изменении фактора X на 1% от своего среднего значения.

Формула среднего коэффициента эластичности для парной линейной регрессии принимает вид:

С увеличением затрат труда в растениеводстве на 1 % от своего среднего значения валовой доход увеличивается в среднем на 0,78%.

 

При линейной корреляции между Х и У исчисляют парный линейный коэффициент корреляции r.

Линейный коэффициент парной корреляции показывает, что связь между затратами труда в растениеводстве и валовым доходом отрасли прямая, умеренная.

 

Изменение результативного признака У обусловлено вариацией факторного признака Х.

Следовательно, вариация валового дохода на 36% объясняется вариацией затрат труда, а остальные 64% вариации валового дохода обусловлены изменением других, не учтенных в модели факторов.

 

5) Поверим адекватность построенной статистической модели (т.е. ее соответствие фактическим данным).

Оценим модель через среднюю ошибку аппроксимации и F-критерий Фишера.

Выполним вспомогательные расчеты (таблица 3.4).

 

Таблица 3.4. – Расчетные величины

Расчетные величины
  92,5313 0,6760 18,4997 342,2382 16,6617
  144,4368 0,4651 -15,1386 229,1779 11,7446
  88,6179 0,8825 31,7896 1010,5795 26,4236
  121,7174 0,0003 -8,7733 76,9709 7,7954
  103,7817 0,2414 1,7605 3,0994 1,6668
Итого 1812,68 6,7924 2,4144 13124,003 313,4681
Средн. 120,85 0,4528 х х 20,8979

 

Средняя ошибка аппроксимации равна 20,9%, т.е. в среднем расчетные значения валового дохода отрасли растениеводства, приходящийся на 100 га пашни, отличаются от фактических на 21%, что не входит в допустимый предел. Таким образом, можно сделать вывод, что аппроксимирующая функция подобрана не достаточно удачно.

 

Проверим модель с помощью F-критерий Фишера. Выдвигаем нулевую гипотезу Но о статистической незначимости уравнения регрессии и показателя тесноты связи (r).

Сравним фактическое значение критерия Фишера с табличным. Для этого выпишем значения критерия Фишера из таблицы «Значения F-критерия Фишера при уровне значимости a=0,05» (приложение5).

В нашем примере k1=1; k2=15-1-1=13.

Таким образом. Fтабл.=4,67 при a=0,05.

Т.к. Fфакт.> Fтабл., то при заданном уровне вероятности a=0,05 следует отвергнуть нулевую гипотезу о статистической незначимости уравнения регрессии и показателя тесноты связи; необходимо признать закономерный характер их формирования.

6. Выдвинем нулевую гипотезу о незначимости коэффициентов корреляции и регрессии.

Рассчитаем случайные ошибки параметров линейной регрессии и коэффициента корреляции:

tтабл при уровне значимости α=0,05 и числе степеней свободы, равном 13, равно 2,1604. (приложение 4)

> tтабл, следовательно нулевая гипотеза о несущественности коэффициентов корреляции и регрессии отвергается, т. е. r и b не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х.

Взаимосвязь между t-статистикой и F-статистикой:

7,35=7,35=7,35

Рассчитаем доверительные интервалы для каждого показателя. Для этого определим предельную ошибку D для каждого из показателей.

С вероятностью 95% можно утверждать, что показатель a находится в пределах:

6,0493< a <45,9549

Так как в пределы доверительного интервала не входит 0, то с вероятностью 95% можно судить о значимости параметра а.

С вероятностью 95% можно утверждать, что коэффициент регрессиинаходится в пределах:

7,9030< b <60,5792

Так как в пределы доверительного интервала не входит 0, то с вероятностью 95% можно судить о значимости коэффициента регрессии.

С вероятностью 95% можно утверждать, что коэффициент корреляциинаходится в пределах:

0,1220< r <1,0000

Так как в пределы доверительного интервала не входит 0, то с вероятностью 95% можно судить о статистической значимости коэффициента корреляции.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

 







Дата добавления: 2015-08-12; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия