Решение произвольных треугольников
Для решения произвольных треугольников существует теорема косинусов и теорема синусов. Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. Формула a 2= b 2+ c 2−2 b c cos A (или формула b 2= a 2+ c 2−2 a c cos B или формула c 2= b 2+ a 2−2 b a cos C) позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащей против неизвестной стороны. Теорема синусов. Стороны треугольника пропорционально синусам противоположных углов asin A = bsin B = csin C, где a, b, c - стороны треугольника. Теорема синусов позволяет по двум сторонам и углу, лежащему против одной из них (или по стороне и двум углам) вычислить остальные элементы треугольника. _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Прямоугольный треугольник Треугольник называют прямоугольным, если у него есть прямой угол.
Рассмотрим произвольный прямоугольный треугольник АВС и проведем высоту СD = hc из вершины С его прямого угла. Она разобьет данный треугольник на два прямоугольных треугольника АСD и ВСD; каждый из этих треугольников имеет с треугольником АВС общий острый угол и потому подобен треугольнику АВС. Все три треугольника АВС, АСD и ВСD подобны между собой. Из подобия треугольников определяются соотношения:
Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Геометрическая формулировка. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Алгебраическая формулировка. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что Признаки равенства прямоугольных треугольников:
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Равнобедренный треугольник Равнобедренный треугольник — треугольник, в котором две стороны равны между собой. По определению, правильный треугольник также является равнобедренным, но обратное, вообще говоря, неверно.
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности. Соотношения для сторон:
Соотношения для углов:
Соотношения для периметра:
Соотношения для площади:
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Равносторонний треугольник
Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или 3 ).
|