Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Температурное поле непрерывного плоского источника. Нагрев полуограниченной среды постоянным потоком тепла.





1.Температурное поле мгновенного плоского источника. Пусть в каж­дой точке (точнее, на каждом участке с размерами dy'×dz') некоторой плос­кос­ти x' = const в момент времени t' мгновенно вы­де­­лилось количество тепла, равное q×dy'×dz'. Пред­ста­вим эту плоскость источником тепла, име­ю­щим бес­ко­неч­ные размеры в y - и z -на­прав­ле­ниях, и проинтегрируем фундаментальное решение по y' и z' от -¥ до +¥:

=

= .

Сделаем в интеграле по z' замену переменных: (z-z')2/[4a(t-t')] = a2. Тогда , и интеграл преобразуется в интеграл Пуассона, умноженный на . Совершенно ана­ло­­гично преобразуется интеграл по y'. Таким образом, интегри­ро­вание по y' и z' дает мно­жи­тель 4a(t-t')p, и в результате получаем:

. (1)

Формула (1) определяет одномерное температурное поле, создаваемое мгно­венным плос­ким источником тепла в неограниченной среде, т.е. температуру точки среды с координатой x в любой момент вре­мени t > t', если в плоскости с ко­ординатой x' момент времени t' мгновенно выделилось количество тепла, рав­ное q (на еди­ни­цу площади).

2.Температурное поле непрерывного плоского источника. Пусть в плос­кости x' = const в момент времени t' = 0 начинает непрерывно действовать плос­кий источник тепла с мощностью W на единицу площади. Выберем для крат­кос­ти записи x' = 0, т.е. поместим начало координат в плоскость, где находится ис­точник. За время dt' этот источник выделяет количество тепла, равное q = Wdt' (на единицу площади). Для нахождения температурного поля, соз­да­вае­мо­го этим источником, проинтегрируем формулу (1) по t' от 0 до t:

. (2)

Сделаем замену переменных: x2/[4a(t - t')] = a2. Тогда: (t - t')1/2 = x/(2a1/2a), dt' = x2da/(2aa3), пределы интегрирования: t' = 0 ® , t' = t ® a = ¥;, и фор­мула принимает вид:

.

Учтем, что rca = l. Интегрируем по частям. Обозначим: . Тогда , и получаем:

.

Первый интеграл в скобках справа - это интеграл Пуассона. Раскрывая скобки, находим:

. (3)

Эта формула определяет температурное поле непрерывного плоского ис­точ­ни­ка в не­о­гра­ни­чен­ной среде.

 

3.Нагрев полу­ограни­чен­ной среды постоянным по­то­ком тепла. Рассмотрим теперь полуограниченную среду (это может быть большой участок грунта с ровной по­верх­ностью, стена большой тол­щи­ны, толстая пластина и т.п.), нагреваемую по­сто­ян­ным тепловым по­­то­ком с плот­ностью мощности W = const (см. ри­су­нок). Считая каж­дую точку нагреваемой по­верх­ности источ­ни­ком теп­ла, мы мо­жем применить полученный результат для оп­ре­де­ле­­ния тем­пе­ра­тур­но­го поля в этой среде. Надо лишь учесть, что, в от­ли­чие от не­о­гра­ни­ченной среды, теп­ло будет рас­про­стра­няться толь­ко в на­прав­ле­нии x > 0, поэтому "эффективность" нагрева бу­дет в два ра­за выше, чем ес­ли бы тепло распространялось в обе стороны, сле­до­вательно, фор­му­ла, оп­ре­де­ля­ющая тем­пе­ра­турное поле в полу­огра­ни­ченной среде, отличается от формулы (3) мно­жи­те­лем 2:

. (4)

 







Дата добавления: 2015-08-12; просмотров: 767. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия