Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Завдання та методичні рекомендації до вивчення теми. Докладно питання побудови різних регресій (парних та множинних лінійних, квазілінійних, нелінійних відносно факторів і параметрів





Докладно питання побудови різних регресій (парних та множинних лінійних, квазілінійних, нелінійних відносно факторів і параметрів, з фіктивними змінними) розглянуті в навчально-методичному посібнику «Економіко-математичні методи та моделі. Частина 2» [4].

Повторимо основні етапи побудови і аналізу лінійної парної регресії на прикладі.

Приклад. Дохід підприємства Y (тис. грн.) наведено в таблиці:

Х, рік                  
Y, дохід 2800,0 6171,0 7192,0 4929,0 8202,0 8891,5 10180,6 11260,0 13440,0

 

Побудуємо діаграму розподілу на основі даних спостережень. Точки спостережень групуються навколо вдаваної прямої (див. рис. на с.11, розрахунок – на с. 12). Тому припустимо, що дані спостережень наближено можна описати лінійною залежністю між фактором Х та показником Y. Побудуємо парну лінійну регресійну модель:

, (1)

де – параметри, які треба визначити;

– відхилення фактичних значень від їх оцінки ;

- кількість спостережень.

Параметри визначимо методом найменших квадратів, згідно з яким, сума квадратів різниць має бути мінімальною для найкращого наближення, яке забезпечує регресія, тобто

.

За допомогою вказаного методу отримані значення параметрів:

=-2259807,1, (2)

= 1129,445, (3)

де - середні значення вибіркових даних.

Отже, розрахункові значення показника обчислюються за формулою:

-2259807,1 + 1129,445 хі.

Середньоквадратична помилка регресії:

= 1172,05. (4)

Відносно середнього вибіркового значення = 8118,5 це становить 14,4 %.

Коефіцієнт кореляції R обчислюється за формулою:

. (5)

Для даної моделі R=0,94 означає, що між фактором та показником існує тісний додатний зв'язок.

Коефіцієнт детермінації для даної моделі дорівнює

= 0,89. (6)

Таким чином, згідно з обраною моделлю, залежність показника Y пояснюється саме фактором Х, залученим у модель, з урахуванням специфікації моделі, на 89 %.

Перевіримо адекватність побудованої лінійної моделі за критерієм Фішера. Для цього розрахуємо значення F-критерію згідно з моделлю:

55,72. (7)

За статичними таблицями F-розподілу Фішера для 5%-ого рівня значимості (задаємо довільно) та при степенях вільності відповідно 1 (для парної регресії) і n- 2=7 знайдемо критичне значення 5,59. Таким чином, розраховане значення F більше, ніж критичне. Отже, можна зробити висновок про адекватність побудованої моделі вихідним даним за F-критерієм Фішера.

Із двох оцінених параметрів саме параметр визначає степінь залежності показника від фактора. Тому перевіримо його статистичну значимість. Це можна зробити за допомогою критерію Стьюдента. Розрахункове значення t-статистики отримаємо як відношення до своєї стандартної похибки :

7,46, (8)

де 151,3, . (9)

Критичне значення t-статистики знаходимо за статистичними таблицями t-розподілу Стьюдента при рівні значимості 0,1 (задаємо довільно) та ступенях вільності n- 2= 7: 1,89.

Таким чином, розрахункове значення більше, ніж критичне. Отже, параметр з надійністю 95% (1-α/2) можна вважати статистично значимим.

Для оцінки впливу фактора Х на показник Y без урахування одиниць виміру обчислимо коефіцієнти еластичності для кожного спостереження за формулою

(10)

та побудуємо діаграму.

Як бачимо, еластичність обсягу реалізації продукції збільшується при збільшенні затрат на рекламу.

Еластичність, що обчислена на основі середніх значень показника і фактора, складає

0,888.

Це означає, що якщо фактор зміниться на 1%, то показник зміниться на 0,888%.

Модель є адекватною, як було показано, зі статистично значимим параметром . Тому її можна використовувати для прогнозування доходу підприємства. Визначимо прогноз на наступний 2013 рік.

Точкову оцінку отримаємо за формулою:

-2259807,1 + 1129,445 хпр = 13765,725 (тис. грн.).

Далі побудуємо надійний інтервал з границями (; ), де

= 2744,67. (11)

Границі довірчого інтервалу (11021,06; 16510,39) (тис. грн.) встановлені з надійністю 95%.

Рис. 1 – Регресія, довірча зона і прогнозні оцінки доходу

 

Рис.2 – Коефіцієнт еластичності доходу

 


 

 

 


Якщо виникає потреба розглядати залежність показника від декількох факторів, треба будувати множинну регресію:

, (12)

де - показник, - фактори, - випадкова величина,

або для го спостереження, :

. (13)

В моделі мають бути присутніми тільки незалежні фактори. Одним із методів визначення наявності чи відсутності мультиколінеарності (залежності факторів) є побудова матриці парних коефіцієнтів кореляції:

 

. (14)

Матриця має властивості: діагональні елементи дорівнюють одиниці; матриця симетрична відносно головної діагоналі. Для розрахунку коефіцієнтів парної кореляції можна користуватися функцією КОРРЕЛ.

Для кожної пари факторів визначають коефіцієнт парної кореляції. Якщо значення коефіцієнта кореляції близько за модулем до одиниці, то між цими факторами існує тісний зв'язок, тобто фактори залежні. Треба виключити один з цих факторів. Виключають той, що має менший вплив на показник, про що свідчать коефіцієнти кореляції між факторами та показником (у першому рядку матриці).

Параметри регресії визначаються у матричному вигляді наступним чином:

, (15)

               

де

- матриця спостережень за незалежними змінними;

- матриця, транспонована до матриці ;

- матриця, обернена до матриці ;

- матриця спостережень за показником ;

- матриця параметрів регресії;

- кількість спостережень, - кількість факторів.

Для зменшення степені залежності коефіцієнту детермінації від кількості факторів використовують оцінений коефіцієнт детермінації: . (16)

 

Для перевірки адекватності моделі використовується критерій Фішера, для визначення значимості параметрів регресії – критерій Стьюдента. Розрахункові значення можна отримати за формулами:

; . (17)

Для визначення меж довірчих інтервалів показника існує формула:

(; ),

, (18)

, (19)

 

, (20)

де .

Використання деяких функцій в електронних таблицях EXCEL для розрахунку статистики і перевірки лінійної регресійної моделі

Для розрахунку параметрів та статистики моделі можна користуватися статистичною функцією ЛИНЕЙН:

 

ЛИНЕЙН (известные_значения_y;известные_значения_x;конст;статистика)

Для даної задачі:

известные_значения_y – значення обсягу реалізації продукції (масив значень У)

известные_значения_x – значення витрат на рекламу (масив значеньХ)

конст – значення, яке показує, чи необхідно, щоб константа мала нульове значення (конст має значення ЛОЖЬ, задається значення 0), чи щоб константа обчислювалася звичайним способом (конст має значення ИСТИНА, задається значення 1).

статистика – значення, яке показує, чи необхідно, щоб виводилась додаткова статистика по регресії (конст має значення ИСТИНА, задається значення 1) або треба вивести тільки значення параметрів регресії (конст має значення ЛОЖЬ, задається значення 0).

Регресійна статистика має вигляд:

an an-1 a1 a0
Sn Sn-1 S1 S0
R2 Sy      
F Df      
ssr sse      

де

an, an-1,…, a0 Параметри регресії
Sn, Sn-1,..., S0 Стандартні помилки параметрів an, an-1,…, a0.
R2 Коефіцієнт детермінації.
Sy Стандартна помилка для оцінки y
F F-статистика.
Df Ступені вільності
ssr Сума квадратів регресії
ssе Сума квадратів залишків

Для розрахунку за допомогою функції ЛИНЕЙН треба виконати такі дії:

1) викликати функцію ЛИНЕЙН (fx);

2) у вікні функції задати значення Х (незалежної змінної - фактора) та значення У (залежної змінної – показника); також задати значення статистики (1) та константи (1); Ок;

3) виділити область: кількість стовпчиків дорівнює кількості параметрів регресії; кількість рядків завжди однакова: 5;

4) натиснути функціональну клавішу F2;

5) натиснути одночасно клавіші Ctrl, Shift, Enter.

Критичне значення критерію Фішера знаходяться за допомогою функції FРАСПОБР (α; р; n-р-1) для надійності та при р факторах,

n – кількість спостережень,

Критичне значення критерію Стьюдента обчислюється за допомогою функції СТЬЮДРАСПОБР (α; n-р-1) для надійності 1- α,

n – кількість спостережень, р – кількість факторів.

Для визначення добутку матриць можна користуватися функцією МУМНОЖ,для обчислення оберненої матриці - функцією МОБР,для транспонування матриць – функцією ТРАНСП.

 

Перетворення нелінійних моделей докладно розглянуто в навчально-методичному посібнику «Економіко-математичні методи та моделі. Частина 2» [4].

 

Питання для самоконтролю

1. Наведіть приклади застосування регресійних моделей в аналізі фінансової діяльності підприємств.

2. В чому полягає економічна сутність кривої Лаффера?

3. Наведіть приклади застосування моделей з фіктивними змінними для аналізу економічних та фінансових процесів.

 

Завдання до самостійної роботи

 

Завдання 1

Дослідження безробіття в Дніпропетровській області

Розглянути дві однофакторні моделі: динаміку зміни показників безробіття та зв'язок між показниками безробіття та середньою заробітною платою.

Обрати правильну специфікацію моделей. Провести аналіз моделей економетричними методами при рівнях значимості 0.05 та 0.1. Зробити висновки. Порівняти розв’язки.

Визначити прогнозні оцінки показників на 2011 та 2012 роки (при обох рівнях значимості).

Дані наведено в таблиці:

 

Рік Номер періоду, Х   Кількість безробітних, тис. осіб, У   Середня заробітна плата, грн., Z  
    85,40 1139,00
    82,40 1455,00
    83,90 1876,00
    128,20 1963,00
    117,70 2369,00

 

 

Завдання 2

Виконання фінансування державних та місцевих програм на соціальний захист населення (на прикладі Індустріального району

м. Дніпропетровська)

Дослідження провести для двох категорій окремо:

· соціальна допомога на догляд за дитиною до 3-х років;

· соціальна допомога малозабезпеченим сім’ям.

Обрати найкращу функцію для апроксимації вихідних даних (наприклад, квадратичну). Оцінити параметри моделей, адекватність в цілому та статистичну значимість параметрів.

Побудувати регресії залежності соціальної допомоги від загальної суми субвенцій та динаміку соціальної допомоги.

Визначити точкову та інтервальну оцінки для прогнозу соціальної допомоги на 2011 рік.

Зробити висновки.

Дані наведені нижче:

 

ік Квартал Всього субвенцій, Xі, тис. грн. Соціальна допомога на догляд за дитиною до 3-х років, Yі, тис. грн. Соціальна допомога малозабезпеченим сім’ям, Zі, тис. грн.
  I 4266,7 895,1 259,8
II 4935,9 1623,3 267,9
III 7722,2 1436,8 194,6
IV 6537,8 1242,6 184,5
  I 6571,8 1357,7 206,1
II 8655,0 1413,7 308,3
III 8438,7 1402,3 203,4
IV 9357,4 1436,6 210,6
  I 9649,3 1509,2 192,8
II 10490,7 1671,4 211,2
III 11445,8 1928,4 207,4
IV 12385,8 2153,0 192,8
  I 12680,0 2602,3 156,5
II 15061,2 3628,1 297,6
III 15905,1 4036,5 369,8
IV 15293,7 4054,1 225,0

 

 

Завдання 3

Дослідження фінансових показників діяльності банку (на прикладі Приватбанку)

Визначити залежність кредитування та виплачених відсотків за депозитами від залучених депозитів. Дані наведено нижче.

Обрати специфікацію моделі. Зробити аналіз економетричними методами. Побудувати довірчі зони регресій (обрати рівень значимості самостійно) та пояснити результати.

Зробити висновки

 

Рік Відсоткові виплати клієнтам, млн. грн. Кредити, млн. грн. Депозити, млн. грн.
  Y Z Х
       
       
       
       
       

 

 

Завдання 4

Обсяг перевезень товарів за три роки в залежності від кварталу представлено у таблиці:

 

t                        
Y                        

 

Побудувати модель перевезень за допомогою фіктивних змінних та звичайну парну модель лінійної регресії.

Порівняти результати.

Побудувати графіки для обох моделей.

Знайти оцінки прогнозу (точкову та інтервальну) обсягу перевезень товарів для третього кварталу наступного року.

 

Рекомендована література

[4, 7, 9, 11]







Дата добавления: 2015-07-04; просмотров: 819. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия