Напряжения в массиве от сосредоточенной силы.
Для упр полупространства (модель 2) есть строгое решение теор упр. Пусть положение т.М1 определяется полярными координатами R и β системы координат с началом в тчк приложения силы Р. Под действием Р т.М1 переместится в напр-ии радиуса R на величину s1. Чем дальше от т.О будет расположена т.М1, тем < будет ее перемещение; при R=∞ перемещение т.М1=0. След-но s1 обратно пропорционально R. При одинак R для различных величин угла β перемещения точек будут неодинаковы. Наибольшее перемещение получит точка, располож на оси z, т.е. при β=0. Чем > угол β, тем < перемещения по направлению радиуса R; в случае β=90 (на поверхности грунта) при малых деформациях они =0. Тогда перемещение т.М1 по направлению радиуса, кроме зоны около точки приложения силы Р: s1=(α1/R)cosβ, где α1 –коэф. пропорциональности. Рассмотрим т.М2 на продолжении радиуса R. Пусть т.М2 находится на расстоянии dR от т.М1, тогда s2=(α1/(R+dR)cosβ. Относительная деформация грунта на отрезке dR: εR=(s1-s2)/dR=(α1cosβ)/(R2+RdR) Пренебрегая величиной RdR малой по сравнению с R2, и учитывая линейную зависимость м\у напряжениями и деформациями, выражение для напряжений сжатия, действующих на площадки, перпендикулярные направлению радиуса R, без учета силы тяжести грунта: σR=(α1α2 /R2)cosβ, где α2 - коэф. Пропорц-ти м\у напряжениями и деф-ми. Для нахождения коэф. α1α2 отсечем мысленно часть полупространства полушаровой поверхностью, с центром в т.О и радиусом R, и составим уравнение равновесия на ось z: N-(интеграл от 0 до π/2)σRcosβ*dA=0, где dA- площадь кольца полушаровой поверхности при изменении угла β на величину dβ. Подставив последнее уравнение значение σR найдем α1α2. Тогда σR=3/2π*P/R2cosβ. Т.к. напряжение σR действует на наклонную площадку dA рассматривая равновесие элементарной треугольной призмы, составим уравнение проекций всех сил на вертикальную ось: σRdA/cosβ- σRcosβdA=0. Подставив выражение σR=3/2π*P/R2cosβ найдем вертикальное напряжение, которое принимается с положит знаком при сжатии σR=3/2π*P/R2cos3β. Т.к. cosβ=z/R, то конечная формула Буссинеска: σR=(3*P*z3)/(2π*R5). В формуле нет параметра характеризующего материал (грунт). Анализируя формулу можно сказать: 1. В точке приложения силы напряжения будут ∞ большими; 2. Полностью напряжения затухают на глубине равной ∞. На практике сосредоточить большой груз в одной точке. При малой же площадке передачи нагрузки напряжение в месте приложения нагрузки превзойдут предел прочности грунта. Поэтому некоторую область (заштрихованная на рисунке) у точки приложения сосредоточенной силы необходимо исключить из рассмотрения.
|