Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Напряжения в массиве от сосредоточенной силы.




Для упр полупространства (модель 2) есть строгое решение теор упр. Пусть положение т.М1 определяется полярными координатами R и β системы координат с началом в тчк приложения силы Р. Под действием Р т.М1 переместится в напр-ии радиуса R на величину s1. Чем дальше от т.О будет расположена т.М1, тем < будет ее перемещение; при R=∞ перемещение т.М1=0. След-но s1 обратно пропорционально R. При одинак R для различных величин угла β перемещения точек будут неодинаковы. Наибольшее перемещение получит точка, располож на оси z, т.е. при β=0. Чем > угол β, тем < перемещения по направлению радиуса R; в случае β=90 (на поверхности грунта) при малых деформациях они =0. Тогда перемещение т.М1 по направлению радиуса, кроме зоны около точки приложения силы Р: s1=(α1/R)cosβ, где α1 –коэф. пропорциональности. Рассмотрим т.М2 на продолжении радиуса R. Пусть т.М2 находится на расстоянии dR от т.М1, тогда s2=(α1/(R+dR)cosβ. Относительная деформация грунта на отрезке dR: εR=(s1-s2)/dR=(α1cosβ)/(R2+RdR) Пренебрегая величиной RdR малой по сравнению с R2, и учитывая линейную зависимость м\у напряжениями и деформациями, выражение для напряжений сжатия, действующих на площадки, перпендикулярные направлению радиуса R, без учета силы тяжести грунта: σR=(α1α2 /R2)cosβ, где α2 - коэф. Пропорц-ти м\у напряжениями и деф-ми. Для нахождения коэф. α1α2 отсечем мысленно часть полупространства полушаровой поверхностью, с центром в т.О и радиусом R, и составим уравнение равновесия на ось z:

N-(интеграл от 0 до π/2)σRcosβ*dA=0, где dA- площадь кольца полушаровой поверхности при изменении угла β на величину dβ. Подставив последнее уравнение значение σR найдем α1α2. Тогда σR=3/2π*P/R2cosβ. Т.к. напряжение σR действует на наклонную площадку dA рассматривая равновесие элементарной треугольной призмы, составим уравнение проекций всех сил на вертикальную ось: σRdA/cosβ- σRcosβdA=0. Подставив выражение σR=3/2π*P/R2cosβ найдем вертикальное напряжение, которое принимается с положит знаком при сжатии σR=3/2π*P/R2cos3β. Т.к. cosβ=z/R, то конечная формула Буссинеска: σR=(3*P*z3)/(2π*R5).

В формуле нет параметра характеризующего материал (грунт). Анализируя формулу можно сказать: 1. В точке приложения силы напряжения будут ∞ большими; 2. Полностью напряжения затухают на глубине равной ∞.

На практике сосредоточить большой груз в одной точке. При малой же площадке передачи нагрузки напряжение в месте приложения нагрузки превзойдут предел прочности грунта. Поэтому некоторую область (заштрихованная на рисунке) у точки приложения сосредоточенной силы необходимо исключить из рассмотрения.

 


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-07-04; просмотров: 315. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.016 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7