Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лінійна залежність і лінійна незалежність системи векторів





 

Означення 1. Система векторів називається лінійно залежною, якщо їх лінійна комбінація дорівнює нульовому вектору:

за умови, що хоча б один з коефіцієнтів відмінний від нуля.

Якщо система векторів лінійно залежна, то хоча б один з них можна подати у вигляді лінійної комбінації інших. Дійсно, якщо, наприклад, , то з (1) випливає:

;

Навпаки, якщо лінійна комбінація векторів , тобто

,

то вся система - лінійно залежна, бо

де .

Означення 2. Система векторів називається лінійно незалежною, якщо їх лінійна комбінація дорівнює нульовому вектору:

тільки за умови рівності нулю всіх коефіцієнтів .

Поняття лінійної залежності векторів дозволяє характеризувати їх взаємне положення в просторі.

Теорема 1. Два вектори лінійно залежні тоді і тільки тоді, коли вони колінеарні.

Теорема 2. Довільні три вектори лінійно залежні тоді і тільки тоді, коли вони компланарні.

Теорема 3. Чотири вектори завжди лінійно залежні, тобто існують числа такі, що для векторів має місце співвідношення:

Зауваження. Розклад (2) за системою трьох некомпланарних векторів - єдиний.

Дійсно, якщо припустити, що існує ще один розклад:

то віднімаючи із (2) останню рівність, отримаємо:

Оскільки - лінійно незалежні (вони не компланарні), то це можливо за умови

Приклад. Накресліть довільний базис Побудуйте вектори , , і

 

 







Дата добавления: 2015-08-12; просмотров: 2339. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия