Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклади. 1. Знайти координати вектора , якщо (-1,2,3), (2,1,4).





Розв’язання. За формулою (1) маємо

=(2-(-1),1-2,4-3)=(3,-1,1).

Приклад 2. Початок вектора збігається з точкою . Знайти точку , з якою збігається кінець вектора .

Розв’язання. Відповідно до формули (1) для вектора маємо

(3,1,-5) = .

Враховуючи властивість 3о із 2.4 запишемо

,

, .

Таким чином знаходимо точку N(1,8,-4).

Приклад 3. Упевнитись, що система векторів утворює базис, та знайти координати вектора в цьому базисі, якщо відомі в прямокутній системі координати цих векторів , , , .

Розв’язання. Згідно означення (див. 2.4) вектори утворюють базис, якщо вони лінійно незалежні, тобто їх лінійна комбінація (де ), тільки тоді, коли .

Перевіримо це, скориставшись властивостями 1о-3о із 2.4:

Прирівнюючи відповідні координати, отримуємо систему:

 

Визначник цієї системи

 

Всі допоміжні визначники бо в кожному з них є нульовий стовпець із вільних членів однорідної системи. Отже, згідно формул Крамера і, таким чином, вектори - лінійно незалежні, а, значить, утворюють новий базис.

Звернемо увагу, що елементи стовпців визначника збігаються з відповідними координатами векторів .

Висновок. Якщо визначник, утворений з координат векторів , відмінний від нуля, то ці вектори лінійно незалежні,тобто утворюють базис.

Тепер знайдемо координати вектора у базисі , тобто знайдемо числа такі, що виконується рівність

Повторюючи попередні перетворення маємо

Прирівнюючи відповідні координати у лівій і правій частинах рівності, отримаємо систему, яку зручніше розв¢язати алгебраїчним додаванням:

.

Із

Таким чином, при отримаємо .








Дата добавления: 2015-08-12; просмотров: 625. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия