Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметры зубчатого колеса, получаемые при нарезании зубьев





Коэффициент смещения. Взаимное положение колеса и заготовки при нарезании зубьев можно охарактеризовать положением делительной прямой инструментальной рейки относительно делительной окружности нарезаемого колеса (рис. 5.7); расстояние между ними называют смещением исходного контура, его выражают в количестве модулей, как xm.

 

Рис. 5.7

 

Безразмерную величину x называют коэффициентом смещения; это алгебраическая величина и здесь различают три случая, показанные рис. 5.7, а – в. Нарезая зубья при различных коэффициентах смещения, можно целенаправленно влиять на размеры и форму этих зубьев, а также на свойства колес и составленных из них передач.

Часть параметров и размеров зубчатого колеса не зависит от коэффициента смещения; к таковым относятся:

модуль m;

угол профиля эвольвенты на делительной окружности (равен углу профиля исходного контура) a;

шаг по дуге основной окружности (основной шаг)

. (5.12)

Значения этих трех параметров у нарезаемого колеса те же, что и у зуборезного инструмента.

Также не зависят от x:

диаметр делительной окружности (делительный диаметр)

; (5.13)

диаметр основной окружности (основной диаметр)

. (5.14)

При нарезании зубьев поверхность их вершин не формируется, т.е. диаметр окружности вершин колеса (диаметр вершин) остается равным диаметру заготовки; следовательно, нарезание зубьев – это попросту удаление материала из впадин колеса.

а б Рис. 5.8

На рис. 5.8 изображены профиль зуба реечного производящего контура (а) и формируемый им при нарезании профиль зуба колеса (б). Во время нарезания начальная прямая 2 производящей рейки перекатывается без скольжения по делительной окружности колеса.

На указанных профилях отмечены соответствующие друг другу точки и участки профилей; в частности:

- эвольвентный участок AL профиля нарезаемого зуба формируется прямолинейным участком профиля зуба рейки;

- переходная кривая LF на профиле зуба колеса формируется круговой кромкой профиля зуба рейки;

- вершина зуба рейки, параллельная ее делительной прямой 1, формирует окружность впадин диаметра колеса.

Очевидно, что часть профиля зуба рейки, расположенная выше точки , в профилировании нарезаемого зуба не участвует.

Найдем размеры колеса, зависящие от коэффициента смещения x:







Дата добавления: 2015-08-12; просмотров: 1361. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия