Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тангенс угла профиля в нижней граничной точке эвольвенты





. (5.18)

Согласно (5.5), диаметр окружности граничных точек

; (5.19)

при , или при

(5.20)

а б Рис. 5.9

эвольвента в точке L плавно сопрягается с переходной кривой
(рис. 5.9, а); при нарушении этого условия наблюдается подрезание зубьев (рис. 5.9, б), которое выражается в том, что переходная кривая пересекает эвольвенту несколько выше основной окружности. В этом случае формула (5.19) не справедлива.

Величину называют коэффициентом наименьшего смещения исходного контура (коэффициентом наименьшего смещения).

Из (5.18) также видно, что у колеса, имеющего z зубьев и нарезанного с коэффициентом смещения x, подрезание отсутствует, если

 

. (5.21)

Величину называют наименьшим числом зубьев свободным от подрезания (наименьшим числом зубьев).

Подрезание ослабляет зуб у основания, укорачивает эвольвентный участок профиля и его обычно стараются избегать; условием отсутс–твия подрезания является соблюдение любого из неравенств:

 

; ; .

 

Рис. 5.10

Толщина зуба по дуге окружности заданного диаметра .

Угол профиля в точке Y, принадлежащей окружности диаметра (рис. 5.10), равен

; (5.22)

если эта точка принадлежит делительной окружности (т.е. ), угол профиля равен углу профиля исходного контура a, так как

.

В таком случае из рис. 5.10 следует, что искомая толщина зуба равна

. (5.23)

Формулу (5.23) используют, например, для нахождения толщины зуба по дуге окружности вершин: при имеем

; (5.24)

. (5.25)

Окружность, на которой расположена точка пересечения двух разноименных эвольвент, ограничивающих профиль одного и того же зуба, называют окружностью заострения (рис. 5.10); ее диаметр находят из условия равенства нулю правой части выражения (5.25):

; (5.26)

. (5.27)

Формулой (5.23) пользуются также для нахождения толщины зуба по дуге основной окружности (основной толщины зуба); при из (5.22) имеем и тогда

. (5.28)

При проектировании зубчатых передач обычно стремятся, чтобы толщина зуба была не меньше некоторой минимально допустимой величины. Часто применяют такие нормы:

– для колес с поверхностным упрочнением зубьев;
– для зубьев без поверхностного упрочнения.






Дата добавления: 2015-08-12; просмотров: 612. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия