Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тангенс угла профиля в нижней граничной точке эвольвенты





. (5.18)

Согласно (5.5), диаметр окружности граничных точек

; (5.19)

при , или при

(5.20)

а б Рис. 5.9

эвольвента в точке L плавно сопрягается с переходной кривой
(рис. 5.9, а); при нарушении этого условия наблюдается подрезание зубьев (рис. 5.9, б), которое выражается в том, что переходная кривая пересекает эвольвенту несколько выше основной окружности. В этом случае формула (5.19) не справедлива.

Величину называют коэффициентом наименьшего смещения исходного контура (коэффициентом наименьшего смещения).

Из (5.18) также видно, что у колеса, имеющего z зубьев и нарезанного с коэффициентом смещения x, подрезание отсутствует, если

 

. (5.21)

Величину называют наименьшим числом зубьев свободным от подрезания (наименьшим числом зубьев).

Подрезание ослабляет зуб у основания, укорачивает эвольвентный участок профиля и его обычно стараются избегать; условием отсутс–твия подрезания является соблюдение любого из неравенств:

 

; ; .

 

Рис. 5.10

Толщина зуба по дуге окружности заданного диаметра .

Угол профиля в точке Y, принадлежащей окружности диаметра (рис. 5.10), равен

; (5.22)

если эта точка принадлежит делительной окружности (т.е. ), угол профиля равен углу профиля исходного контура a, так как

.

В таком случае из рис. 5.10 следует, что искомая толщина зуба равна

. (5.23)

Формулу (5.23) используют, например, для нахождения толщины зуба по дуге окружности вершин: при имеем

; (5.24)

. (5.25)

Окружность, на которой расположена точка пересечения двух разноименных эвольвент, ограничивающих профиль одного и того же зуба, называют окружностью заострения (рис. 5.10); ее диаметр находят из условия равенства нулю правой части выражения (5.25):

; (5.26)

. (5.27)

Формулой (5.23) пользуются также для нахождения толщины зуба по дуге основной окружности (основной толщины зуба); при из (5.22) имеем и тогда

. (5.28)

При проектировании зубчатых передач обычно стремятся, чтобы толщина зуба была не меньше некоторой минимально допустимой величины. Часто применяют такие нормы:

– для колес с поверхностным упрочнением зубьев;
– для зубьев без поверхностного упрочнения.






Дата добавления: 2015-08-12; просмотров: 612. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия