Деформационные датчики давления
В промышленной практике измерения давления и разности давлений широкое применение получили деформационные (с упругим чувствитель- ным элементом) приборы. В этих приборах давление определяется по де- формации упругих чувствительных элементов или по развиваемой ими си- ле, которые преобразуются передаточными механизмами в угловое или линейное перемещение указателя по шкале прибора. По виду упругого чувствительного элемента пружинные приборы делятся на следующие группы: - приборы с трубчатой пружиной; - мембранные приборы; - сильфонные приборы. Манометры с трубчатой пружиной - один из наиболее распростра- ненных видов деформационных приборов. Чувствительным элементом та- ких приборов является согнутая по дуге окружности и запаянная с одного конца трубка 1 (трубка Бурдона) эллиптического, плоскоовального сечения или круглого сечения (рис. 3.6). Третий вид трубок выполняют из легиро- ванной стали и используют для измерения высоких давлений (свыше 98 МПа).
а – эллиптического сечения; б – плоскоовального сечения; в – круглого сечения 1 – трубка; 2 – держатель
Одним концом трубка заделана в держатель 2, оканчивающийся ниппелем с резьбой для присоединения к полости, в которой измеряется давление. Внутри держателя есть канал, соединяющийся с внутренней полостью трубки. Если в трубку подать жидкость, газ или пар под избыточным давлением, то кривизна трубки уменьшается и она распрямляется; при создании разрежения внутри трубки кривизна ее возрастает, и трубка скручивается. Свойство изогнутой трубки некруглого сечения изменять величину изгиба при изменении давления обусловлено изменением формы сечения. Под действием давления внутри трубки эл- липтическое или овальное сечение, деформируясь, приближается к круго- вому, что приводит к раскручиванию трубки, т.е. угловому перемещению ее свободного конца на небольшую величину Δ. В трубках круглого сечения, благодаря эксцентричному каналу, из- быточное давление, действуя на заглушку свободного конца трубки, созда- ет момент, вызывающий уменьшение ее кривизны. Это перемещение в оп- ределенных пределах пропорционально измеряемому давлению. Перемещение свободного конца до определенного предела пропорционально давлению Δ =k·P. При дальнейшем повышении давления линейная зависимость нарушается – деформация начинает расти быстрее увеличения давления. Предельное давление, при котором еще сохраняется линейная зависимость между перемещением конца трубки и давлением, называется пределом пропорциональности трубки P п. Предел пропорциональности является важнейшей характеристикой трубки. При переходе давления за предел пропорциональности трубка приобретает остаточную деформацию и становится непригодной для измерения. Чтобы не допустить возникновения остаточной деформации, наибольшее рабочее давление Р max (разрежение или разность давлений) назначают ниже предела пропорциональности P п. Отношение Р п/ P max = k называется коэффициентом запаса. Во всех случаях коэффициент k должен быть больше единицы. Для максимального увеличения долговечности трубки и снижения влияния упругого последействия принимают k = 1,35 ÷ 2,5. В соответствии с этим шкалу манометра (верхний предел измерения) выбирают таким образом, чтобы рабочий предел измерения (наибольшее рабочее давление) был не более 3/4 верхнего предела измерения при по- стоянном давлении и не более 2/3 верхнего предела измерения при пере- менном давлении. Верхние пределы измерения манометра выбирают из ряда: (1; 1,6; 2,5; 4 и 6) · 10n, где n - целое положительное или отрицательное число. Перемещение Δ свободного конца трубки под действием давления весьма невелико, поэтому в конструкцию прибора введен передаточный механизм, увеличивающий масштаб перемещения конца трубки. Конст- рукция манометра с трибко-секторным передаточным механизмом показа- на на рис. 3.7. Манометры с трубчатой пружиной изготовляют на давление до 1000 МПа.
Рис. 3.7. Манометр с трубчатой пружиной: стрелка; 11 – тяга.
Мембранные приборы. Приборы с чувствительным элементом в виде плоских и гофрированных мембран, мембранных коробок и мембран- ных блоков применяют для измерения небольших избыточных давлений и разрежений (манометры, напоромеры и тягомеры), а также перепадов дав- ления (дифманометры).
h
Рис. 3.8. Мембрана и ее прогиб Мембрана представляет собой тонкий диск определенного диаметра, выполненный из металла или специ- ального упругого материала, который жестко закрепляется по периметру в измерительном блоке (рис. 3.8). Под воздействием измеряемого давления Р 1 (при условии Р 1> Р 2, где Р 2 – внеш- нее давление) происходит прогиб мембраны на величину h, что в дальней- шем приводит к преобразованию этого перемещения во вращательное движение стрелки прибора. Мембраны делят на упругие и «вялые». Упругие мембраны выпол- няют из тонких металлических пластин (сталь, бронза, латунь). Они обла- дают достаточно большой собственной жесткостью, их статические харак- теристики, представляющие зависимость перемещения h центра мембраны или развиваемой силы от давлений P 1 и Р 2 или перепада Δ Р=Р 1 – Р 2, обыч- но нелинейны. Применяют плоские и гофрированные упругие мембраны (рис.3.9, a,б). Наличие гофров делает статическую характеристику мембра- ны более линейной.
А) б)
Рис. 3.9. Упругие мембраны: а – плоская; б – гофрированная
Упругие мембраны используют, преимущественно, как чувствитель- ные элементы в первичных преобразователях, например, в дифманометрах. «Вялые» мембраны выполняют из прорезиненной тонкой ткани (ка- прон, шелк, полотно). К ним предъявляют два требования - отсутствие собственной жесткости и большая прочность. Эти требования вытекают из основного назначения «вялых» мембран – преобразовывать большие пере- пады давлений в силу при крайне малых перемещениях (порядка сотых долей мм). «Вялые» мембраны обычно снабжены металлическим жестким центром. Они также могут быть плоскими и гофрированными. Величина прогиба мембраны является сложной функцией дейст- вующего на нее давления, ее геометрических параметров (диаметра, тол- щины, числа и формы гофров), а также модуля упругости материала мем- браны. Число, форма и размеры гофра зависят от назначения прибора, пре- делов измерения и других факторов. Гофрировка мембраны увеличивает ее жесткость, т.е. уменьшает прогиб при одинаковом давлении. Из-за слож- ности расчета в большинстве случаев характеристику мембраны подбира- ют опытным путем. Для увеличения про- гиба в приборах для малых давлений (разрежений) мембраны попарно соеди- няют (сваркой или пайкой) в мембранные коробки (рис. 3.10,а), а коробки – в мем- бранные блоки (рис. 3.10,б). элементы: а – мембранная коробка; б – мембранный блок Сильфонные приборы. Сильфон – это тонкостенная металлическая камера с гофрированной боковой поверхностью (рис. 3.11). Изготавливают сильфоны из латуни, а также из нержавеющей стали или бериллиевой бронзы. Они применяются в качестве чувствительных элементов приборов давления, которые своевременно и точно реагируют на изменение давле- ния.
При действии нагрузки (внешнего Р 2 или внутреннего Р 1 давления) длина сильфона изменяется, увеличиваясь или уменьшаясь в зависимости от направления приложенной силы. Наличие гофров позволяет перемещать подвижную часть сильфона на значительное расстояние (десятки миллиметров) без заметного изменения его характеристик. Выходная координата сильфона - перемещение h, входные - давления Р 1 и Р 2 или их разность Δ Р. Существенными недостатками сильфонов являются значительный гистерезис и некоторая нелинейность характеристики. Для увеличения жесткости, уменьшения влияния гистерезиса и нелинейности часто внутрь сильфона помещают винтовую цилиндрическую пружину. В этом случае характеристика сильфона изменяется, так как к жесткости сильфона добавляется жесткость пружины. Жесткость пружины обычно в несколько раз превышает жесткость сильфона, благодаря чему резко уменьшается влияние гистерезиса сильфона и некоторой нелинейности его характеристики. Расчетные формулы основных размеров сильфонов весьма сложны и не всегда подтверждаются опытом. Обычно диаметр сильфонов находится в пределах 20 - 80 мм.
|