Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цепи, состоящие из резисторов





При последовательном соединении резисторов их сопротивления складываются

Доказательство:

Так как общая разность потенциалов равна сумме её составляющих:

А из закона Ома падение напряжения на каждом сопротивлении равно:

при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток , поэтому подставляя в формулу для суммы напряжений закон Ома, записываем:

Делим всё на ток и получаем:

 

При параллельном соединении резисторов складываются величины, обратные пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находя общее(искомое) сопротивление.

Доказательство:

Так как заряд при разветвлении тока сохраняется, то:

Из закона Ома ток через каждый резистор равен: , но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов:

Делим всё на U и получаем общую проводимость , и общее сопротивление

Пример

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов и , общим сопротивлением , другой из резистора , общая проводимость будет равна , то есть общее сопротивление .

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.







Дата добавления: 2015-08-12; просмотров: 524. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия