Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Степень кинематической неопределимости сооружения





Часть 8. Расчет статически неопределимых систем методом перемещений на силовое воздействие

Степень кинематической неопределимости сооружения

 

Расчет статически неопределимых систем методом сил на различные воздействия сводится к определению усилий в лишних связях из системы канонических уравнений этого метода. Вычисление внутренних усилий в различных элементах сооружения и построение их эпюр в методе сил производится в основной системе, как правило, статически определимой, испытывающей заданные воздействия и воздействия усилий в лишних связях. Таким образом, выявление напряженно-деформированного состояния сооружений в расчетах методом сил начинается с получения картины распределения внутренних усилий и завершается вычислением перемещений отдельных узлов и сечений сооружения.

Возможен принципиально иной подход к расчету сооружений, когда выявление их напряженно-деформированных состояний начинается с определения перемещений от заданных воздействий и завершается построением эпюр внутренних усилий. Такой подход в расчетах сооружений реализуется в методе перемещений.

В методе перемещений сохраняются допущения, ранее принятые при расчете сооружений методом сил, а именно: материал, из которого изготовлены элементы сооружений, подчиняется закону Гука; перемещения отдельных сечений и узлов сооружений малы по сравнению с их геометрическими размерами. C учетом сформулированных допущений сооружения можно рассматривать как линейно-деформируемые системы, для которых справедлив принцип независимости действия сил и вытекающий из него принцип пропорциональности.

Известно, что для определения изгибающего момента в произ­вольном сечении заданного стержня необходимо знать величины поворотов в концевых сечениях и относительные линейные смеще­ния концов стержня друг относительно друга.

При расчете статически неопределимой системы методом пере­мещений первоначально необходимо установить общее число неиз­вестных перемещений, подлежащих определению для адекватного вычисления величин внутренних усилий.

За неизвестные в методе перемещений принимаются перемещения узлов от заданных воздействий: линейные перемещения шарнирных и жестких узлов Z1 и Z2 и повороты жестких узлов Z3 (рис. 8.1,а,б). Суммарное количество неизвестных угловых (nθ) и линейных (nΔ) перемещений узлов называется степенью кинематической неопределимости сооружения.

nkin = nθ + nΔ. (8.1)

Число неизвестных угловых перемещений nθ равно количеству жестких узлов сооружения. Жестким считается узел, в котором кон­цы, по крайней мере, двух из сходящихся в нем стержней жестко связаны между собой (например, узлы 1, 2, 3, на рис.8.2, а).

Рис.8.2

 

Для сооружений, в которых перемещения от внешних воздействий обусловлены преимущественно изгибными деформациями, при определении числа независимых линейных перемещений узлов вводятся дополнительные допущения:

1. Элементы сооружений считаются нерастяжимыми и несжимаемыми, т.е. пренебрегают изменением их длин под действием продольных сил.

2. Предполагается, что длины хорд искривленных стержней равны их первоначальным длинам, т.е. А′В′ = АВ (рис. 8.3).

Считая сформулированные допущения справедливыми, число независимых линейных перемещений узлов сооружения nΔ можно определить по его шарнирной схеме, полученной из заданного сооружения введением во все жесткие узлы, включая и опорные, врезанных цилиндрических шарниров (рис.8.2, б и рис.8.4, б). Число неизвестных линейных сме­щений узлов системы равно числу стержней, которые необходимо ввести в шарнирную схему, чтобы превратить ее в геометрически неизменяемую систему. Следовательно, число независимых линей­ных смещений узлов равно степени геометрической изменяемости шарнирной системы, полученной из заданной, путем введения во все жесткие узлы, включая и опорные, полных шарниров.

На основании о пренебрежении продольными деформациями элементов, для плоской рамы (рис.8.1, а), линейные смещения узлов отсутствуют. При этом, шарнирная схема (рис.8.2, б) является геометрически неизменяемой.

Рис.8.4

 

Рамы, шарнир­ные схемы которых являются геометри­чески неизменяемы­ми, относятся к ка­тегории, так называ­емых, закрепленных или несвободных. Для таких рам число неизвестных перемещений легко определяется и оно всегда равно числу жестких узлов: n = nθ. В нашем примере nkin = 3.

В качестве другого примера, рассмотрим раму, изображенную на рис.8.4, a, число жестких узлов которого равно 2. Следова­тельно, nθ = 2.

Шарнирная схема рамы один раз геометрически изменяемая, так как для превращения ее в геометрически неизменяемую необ­ходимо ввести 1 стержень, например, так, как это показано на рис.8.4, б. Итак, число линейных неизвестных перемещений nΔ= 1. Общее число неизвестных перемещений в рассматриваемой системе, изображенной на рис.8.4, a, равно nkin = 2 + 1 = 3.

Степень свободы полученной таким образом шарнирной схемы будет равна числу независимых линейных перемещений узлов заданной системы. Для подсчета количества степеней свободы плоской шарнирной схемы Wиспользуют формулу:

 

W = 2Y − C − Co, (8.2)

где Y – число узлов; C – число стержней, соединяющих узлы;

Co – число опорных связей.







Дата добавления: 2015-08-12; просмотров: 3203. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия