Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция надежности.





Пусть некоторое устройство начинает работать в момент времени t0 = 0, а по истечении времени длительностью t происходит отказ. Обозначим через Т НСВ - длительность времени безотказной работы устройства. Если устройство проработало безотказно время меньшее t, то, следовательно, за время длительностью t наступит отказ. Тогда функция распределения F(t)=P(T<t)=1- e-mt определяет вероятность отказа устройства за время t.

Найдем вероятность противоположного события- безотказной работы за время t:

.

Функция R(t) называется функцией надежности.

Выясним смысл числовых характеристик и параметра распределения.

Математическое ожидание - это среднее время между двумя ближайшими отказами устройства, а величина обратная математическому ожиданию (параметр распределения)- интенсивность отказов, т.е. количество отказов в единицу времени.

 

Пример. Время безотказной работы устройства распределено по закону

Найти среднее время безотказной работы устройства, вероятность того, что устройство не откажет за среднее время безотказной работы. Найти вероятность отказа за время t= 100 часов.

Решение:

По условию интенсивность отказов m =0,02. Тогда среднее время между двумя отказами, т.е. математическое ожидание М(Х)=1/0,02=50часов. Вероятность безотказной работы за этот промежуток времени вычислим по функции надежности:

По функции F(t) вычислим вероятность отказа за время t =100 часов:

 







Дата добавления: 2015-08-12; просмотров: 384. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия