Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Погрешность решения и обусловленность системы уравнений





Рассмотрим влияние погрешности правой части и свойств матрицы системы линейных уравнений на погрешность решения. Пусть правая часть системы задана приближенно, с погрешностью η:

 

A x = b 1, b 1 = b + η.

 

Пусть x 1 решение неточно заданной системы A x = b 1, а x решение точной системы A x = b. Обозначим погрешность решения через r = x 1x. Тогда можно записать A x 1= b 1 в виде A (x + r)= b + η, и A r = η.

Определение 3.3. Мерой обусловленности системы называется число

 

(3.29)

 

Мера обусловленности системы равна верхней грани отношения относительной погрешности решения к относительной погрешности правой части. Из формулы (3.29) следует неравенство

 

(3.30)

 

Если мера обусловленности системы принимает большое значение, то это означает, что небольшая погрешность правой части может привести к большой погрешности решения, т.е. полученное приближенное решение окажется непригодным.

Учитывая, что r = A –1η, можно получить формулу вычисления меры обусловленности системы:

(3.31)

 

Определение 3.4. Мерой обусловленности матрицы A называется число

(3.32)

 

Для вычисления меры обусловленности матрицы можно с помощью (3.31) получить формулу

 

(3.33)

 

Учитывая (3.30), можно записать

 

(3.34)

 

Неравенство (3.34) связывает относительные погрешности правой части и решения системы через свойства матрицы системы.

Определение 3.5. Системы уравнений и матрицы называются плохо обусловленными, если их меры обусловленности принимают большие значения, и хорошо обусловленными, если их меры обусловленности принимают малые значения.

Понятно, что при решении хорошо обусловленных систем малые погрешности правой части приводят к малым погрешностям решения, а плохо обусловленные системы уже нельзя решать обычными методами.

Пример 3.7. Для данной системы линейных уравнений исследовать влияние погрешности правой части на погрешность решения.

 

 

Решение. Решение системы x = (0,5; 0,2; –1; 0) T можно найти в программе Mathcad по формуле x = A –1b, где A — матрица коэффициентов, а b — вектор правых частей:

 

 

Если мы изменим правые части на 0,01 (прибавим к каждой координате вектора b число 0,01), то получим приближенное решение x 1 = (0,342; 0,634; –1,9; 0,667) T, которое отличается от точного решения на вектор x 1x =
(–0,158; 0,434; –0,9; 0,667) T:

 

 

 

Мы видим, что незначительные погрешности правой части приводят к решению, которое сильно отличается от точного. Это объясняется плохой обусловленностью матрицы системы. Действительно, если мы вычислим число обусловленности матрицы A по формуле (3.33), пользуясь определением нормы (3.19), используя функцию программы Mathcad eigenvals(A TA), получим:

 

 

 

Отсюда получим значение числа обусловленности матрицы A:

 

|| A || = 322,2650,5 = 17,95, || A –1|| = 367200,5 = 191,62, τ = || A ||∙|| A –1|| = 3439,7.

 







Дата добавления: 2015-08-12; просмотров: 1229. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия