Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.





1. Зададим начальное приближение x 0 к собственному вектору; k = 0;

2. Вычисляем следующие приближения x k +1 формулам

 

(3.40)

3. Если |λ k +1 – λ k | ≥ ε, переходим к пункту 2, иначе — к 4;

4. Конец.

 

Критерием для остановки итераций является условие |λ k +1 – λ k | < ε, где ε — заданная погрешность.

В (3.40) можно вычислить сначала k -ю степень матрицы A и умножить её на вектор x 0 (см. пример 3.10), а в формуле для λ k можно брать отношение ненулевой координаты вектора x k +1 к соответствующей координате вектора x k, которая тоже не должна быть равной нулю. Так как заранее не известно, какие координаты собственного вектора не равны нулю, то лучше брать отношение сумм координат.

Пример 3.10. Найти наибольшее по модулю собственное значение и соответствующий собственный вектор матрицы A из примера 3.9.

Решение. Проведем расчеты в программе Mathcad. Вычислим
x 10 = A 10x 0 и x 11 = A 11x 0 и найдем собственное значение как отношение сумм координат векторов x 11 и x 10, а затем нормируем x 11:

 

Полученные результаты практически совпадают с решением предыдущего примера 3.9.

Составим на C ++ программу вычисления наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы A по формулам (3.40):

 

#include <iostream.h>

#include <except.h>

#include <math.h>

int EigenMax(long double **a, long double *eig_val,long double *x0,

long double *x1, long double eps, const int n, int k_max);

int main(){

long double **a, *x0, *x1, eigv, eps; int i,j,n,k_max;

cout <<"\n input n = "; cin >> n;

cout <<"\n input k_max = "; cin >> k_max;

cout <<"\n input eps = "; cin >> eps;

try {

a= new long double*[n]; for(i=0;i<n;i++) a[i]=new long double[n];

x0= new long double[n]; x1= new long double[n];

}

catch (xalloc){cout <<"\nCould not allocate\n"; exit(-1);}

cout <<"\n input matrix a \n";

for (i=0; i<n; i++)for (j=0; j<n; j++)cin >> a[i][j];

for (i=0; i<n; i++){cout << "\n";for (j=0; j<n; j++)cout <<" "<< a[i][j];}

cout <<"\n input vector x0\n";

for (i=0; i<n; i++)cin >> x0[i];

for (i=0; i<n; i++)cout << "\n x0[" << i <<"] =" << x0[i];

eigv = 0;

EigenMax(a, &eigv, x0, x1,eps, n, k_max);

cout << "\n Max Eigen Value = " << eigv;

cout << "\n Eigen Vector: ";

for (i=0; i<n; i++)cout << "\n x1[" << i <<"] =" << x1[i];

cin >> i; // for pause

for(i = 0; i < n; i++) delete[] a[i];

delete a;

delete[] x0;

delete[] x1;

return 0;

}//end main

int EigenMax(long double **a, long double *eig_val,long double *x0,

long double *x1, long double eps, const int n, int k_max){

int i, j, k; long double xerr, xnrm, eig0, s, s0, s1;

k = 0;

do { eig0 = *eig_val;

for (i = 0; i < n; i++){

s = 0; for (j = 0; j < n; j++)s += a[i][j]*x0[j]; x1[i] = s;}

s0 = 0; s1 = 0;

for (i = 0; i < n; i++){s0 += x0[i]; s1 += x1[i];}

*eig_val = s1/s0; xerr = fabs(*eig_val - eig0);

xnrm = 0;

for (i = 0; i <= n-1; i++) xnrm += x1[i]*x1[i];

xnrm = sqrt(xnrm);

for (i = 0; i < n; i++){x1[i] = x1[i]/xnrm; x0[i] = x1[i]; }

k = k + 1; if (k > k_max)break;

}while (xerr > eps);

return 0;

}// end EigenMax

 

Найдем с помощью этой программы наибольшее собственное значение матрицы из примера 3.10:

 

Input n = 3

Input k_max = 1000

Input eps = 0.000001

Input matrix a

3 1 0 1 2 0 0 0 2

3 1 0

1 2 0

0 0 2

Input vector x0

Max Eigen Value = 3.61795

Eigen Vector:

x1[0] =0.850651

x1[1] =0.525731

x1[2] =3.81633e–05

 

Результаты с заданной точностью совпадают со значениями, найденными в примерах 3.9, 3.10.







Дата добавления: 2015-08-12; просмотров: 1742. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия