Студопедия — Править]Примечания
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Править]Примечания






1. ; Грузовые электровозы переменного тока: Справочник. Дубровский З. М., Попов В. И., Тушканов Б. А. М., Транспорт, 1998.

2. ; Электровоз магистральный 2ЭС5К (3ЭС5К). Руководство по эксплуатации. Книга 1. Описание и работа. Электрические схемы. ОАО ВЭлНИИ.

3. ; Электрооборудование самолёта Ту-134А. Норкин Я. Ш., М., Машиностроение, 1976.

4. ; Болотин З. М., Травина Н. Л., Соломатин В. В. М., ИЦ «Академия», 2004.

5. ; Авиационное оборудование. Андриевский А. Ю., Воскресенский Ю. Е., Доброленский Ю. П. и др. М., Воениздат, 1989.

5. Система «Тиристорный преобразователь – двигатель»

На всех этапах развития электропривода много внимания уделялось поиску возможностей замены электромашинных преобразователей статическими вентильными преобразователями. В свое время получила некоторое распространение система управляемый ртутный выпрямитель - двигатель (УРВ-Д). Однако особенности ртутных вентилей - значительное падение напряжения в дуге, большие габариты, сложность эксплуатации, значительная мощность и несовершенство системы сеточного управления - не позволили этой системе успешно конкурировать с системой Г-Д Эта задача получила успешное решение только после создания полупроводниковых кремниевых вентилей и совершенных систем импульсно-фазового (СИФУ) управления на базе микроэлектроники, которые позволили разработать тиристорные преобразователи с высокими техническими показателями.
Схема системы ТП-Д представлена на рис.6.10,а.

Двигатель постоянного тока Д получает питание от тиристорного преобразователя ТП, который преобразует напряжение сети переменного тока Uc в выпрямленное напряжение Uя, приложенное к цепи якоря двигателя. Для сглаживания пульсаций тока в цепь якоря введен сглаживающий реактор Р. Выпрямленное напряжение Uя зависит от угла регулирования а, противоЭДС нагрузки, тока нагрузки, падений напряжения на элементах силовой цепи преобразователя, и внешние характеристики преобразователя UTП=UЯ=f(Iя, Е) при?=const имеют сложный нелинейный вид.
Внешняя характеристика тиристорного преобразователя близка к линейной только при непрерывном токе нагрузки. При этом процессы в цепи выпрямленного тока определяются средними значениями напряжения и тока, что позволяет без большой погрешности представить преобразователь в качестве источника питания с ЭДС Еп и эквивалентным внутренним сопротивлением Rп экв. Значения Еп в этом режиме однозначно определяются утлом регулирования а и при линейной характеристике СИФУ зависимость а показана En=f(U) на рис.6.10,б (кривая 1) При замене реальной характеристики линеаризованной как динамическое звено системы электропривода тиристорный преобразователь в режиме непрерывного тока описывается уравнением

где kn=En/Uy=const; Tn - малая постоянная, учитывающая дискретность, запаздывание и наличие фильтров в системе фазоим-пульсного управления.
Уравнение электрического равновесия для якорной цепи, записанное в операторной форме, в этом режиме аналогично (6.7) для системы Г-Д:

где RЯ?=Rпэкв+Rя?дв - суммарное сопротивление якорной цепи ТП-Д; Rп.экв=Rк+Rт+Rр+Rвср - эквивалентное сопротивление преобразователя, Rк=mхт/2? - сопротивление, учитывающее снижение выпрямленного напряжения из-за процессов коммутации токов вентилями преобразователя; Rт, XT – приведенные ко вторичной цепи активное и индуктивное сопротивления рассеяния фазы трансформатора; m - число фаз выпрямления; R - сопротивление обмотки сглаживающего реактора Р; RK-усредненное сопротивление п вентилей, по которым протекает ток Iном.
С помощью (6.15) при Ф=Фном получим уравнение механической характеристики:

где

Следовательно, в режиме непрерывного тока механические характеристики электропривода в системе ТП-Д при принятых допущениях аналогичны системе Г-Д. Статические характеристики, соответствующие (6 16) при р=0, показаны на рис 6.10,в.
Реальные статические механические характеристики могут отличаться от представленных на рис.6.10,в. Если в системе используется реверсивный тиристорный преобразователь с совместным согласованным управлением комплектами вентилей, характеристики могут несколько отличаться в зоне перехода от двигательного режима к режиму рекуперации вследствие неточности согласования характеристик управления комплектами вентилей (при Uy=0,?>90 °).
При раздельном управлении комплектами вентилей в области малых нагрузок ток становится прерывистым, и это существенно меняет характеристики. При U=0 и?=90 ° среднее значение Eп становится не равным нулю и увеличивается по мере уменьшения интервала проводимости. Для Iя=0 зависимость Eп=f(Uу) при p=0 приобретает вид кривых 2 и 3. В зоне прерывистых токов искажаются и механические характеристики, как показано на рис.6.10,в для естественной характеристики 1 штриховыми линиями 2 и 3.
Наиболее существенные особенности в систему ТП-Д вносит использование нереверсивного тиристорного преобразователя. При этом система является неполноуправляемой, ток якоря может протекать только в одном направлении. Соответственно механические характеристики во втором и третьем квадрантах не существуют.
Учет особенностей, вносимых различными тиристорными преобразователями, при проектировании электропривода имеет важное практическое значение Ему уделяется главное внимание в курсе «Системы управления электропривода» при изучении свойств и методов построения и расчета различных систем ТП-Д. В данном курсе для выявления общих закономерностей регулируемого электропривода предполагается работа системы ТП-Д при непрерывном токе и используются уравнения (6.14)-(6.16).
Структурные схемы системы ТП-Д, соответствующие этим уравнениям и уравнению движения электропривода при жестких механических связях, представлены на рис.6.11,а и б. При составлении схемы на рис.6.11,б уравнение (6.14) представлено в виде

где

Система ТП-Д отличается весьма высоким быстродействием преобразователя. Постоянная времени Тп при полупроводниковой СИФУ не превосходит 0,01 с. Соответственно возможности создания быстродействующих электроприводов при переходе к системе ТП-Д существенно расширяются.
Оценим экономичность системы ТП-Д в сравнении с системой Г-Д. При использовании нереверсивного преобразователя установленная мощность системы ТП-Д составляет 2Рдв, т.е. меньше, чем для системы Г-Д. Однако при этом система ТП-Д имеет ограниченные технические возможности. В сравнимом варианте использования реверсивного преобразователя установленные мощности систем ТП-Д и Г-Д примерно одинаковы. Однако преимущества статического преобразователя перед вращающимся при этом говорят в пользу системы ТПД.
Важным достоинством системы ТП-Д является ее высокий КПД. Потери энергии в тиристорах при протекании номинального тока составляют 1-2% номинальной мощности привода. Поэтому даже с учетом потерь в реакторе и трансформаторе КПД преобразователя при мощности, составляющей десятки киловатт, достаточно высок.
Недостатками тиристорного преобразователя являются изменяющийся в широких пределах cos ф, равный примерно cos?, и значительные искажения формы потребляемого из сети тока. Для повышения коэффициента мощности применяют регулируемые фильтрокомпенсирующие устройства.

Однако введение этих устройств ухудшает в 1,5-2 раза массогабаритные показатели системы ТП-Д и увеличивает ее стоимость.

6. Вентильный электродвигатель — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Вентильные двигатели (в англоязычной литературе BLDC или PMSM) ещё называют бесколлекторными двигателями постоянного тока (БДПТ), потому что коллектор такого двигателя обычно питается от постоянного напряжения.

Содержание [убрать] · 1 Описание и принцип работы · 2 Применение · 3 Достоинства и недостатки · 4 Конструкция o 4.1 Статор o 4.2 Ротор o 4.3 Датчик положения ротора o 4.4 Система управления · 5 См. также · 6 Ссылки






Дата добавления: 2015-08-12; просмотров: 522. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия