ЭТАЛОНЫ ОТВЕТОВ НА ТЕСТОВЫЕ ЗАДАНИЯ
АВ 2 Ж 3 АБ 2 А 1 Е 3 З 3 З 3 А 1 БВ 2 АГ 2 АД 2 В 1 З 4 А 1 Б 1 БГ 2 АГ 2 Б 1 Г 1 Б 1 Ж 3 Е 4 И 3 Ж 3 И 4 А, Б 2 БГ 2 АВ 2 АБВ 3 А1,2,4. Б1,3 5 Е 3 Ж 3 И 3 АБ 2 А 1 Ж 3 Е 3 АБ 2 А 1 Б 1 А1а,2в,3а.Б1в,2а,3в 5 БГ 2 АБВГ 4 БВД 3 АГД 3 БГ 2 Д 4 А-1, Б-3, В-1 3 Б 1 Б 1 АБ 2 Ж 4 З 4 Е 2 Ж 3 Е 5 З 3 АБ 2 Е 5 Б, Г 2 IА, IIБ,В, IIIБ 4 I-Б, В, II-А, III-А 4 И 4 Е 3 Д 4 З 4 АБ 2 АВ 2 И 4 З 4 БВЕ 3 И 3 А, Б, В 3 Ж 3 Е 5
ГИПОКСИЯ (КИСЛОРОДНОЕ ГОЛОДАНИЕ)
Для нормальной жизнедеятельности любого биологического объекта требуется непрерывный обмен веществом, энергией и информацией. Энергетические потребности реализуются путем использования высокоэргических фосфорных соединений (АТФ, креатинфосфата и других), которые синтезируются при участии главным образом кислорода. Окисление основного энергетического субстрата глюкозы осуществляется тремя путями: анейробный гликолиз (ферментами цитоплазмы); тканевое дыхание и связанное с ним окислительное фосфорилирование; пентозо-гексозомонофосфатный путь (ферментами митохондрий). Энергетический выход анейробного гликолиза, когда глюкоза распадается до молочной и пировиноградной кислот, составляет 2 молекулы АТФ; при аэробном распаде одного моля глюкозы, когда молочная и пировиноградная кислоты вступает в цикл Кребса, образуется 38 молей АТФ; наконец, прямое окисление одного моля глюкозы – глюкозо-1-монофосфатный путь с вовлечением в процесс липидов дает образование от 117 до 130 молей АТФ. Резервы кислорода в организме также весьма ограничены. Общая кислородная емкость организма составляет 1,5 л (легкие 370, артериальная кровь – 280, венозная – 600, мышцы – 140, остальные органы – 60 мл). Так как организм в покое потребляет около 280 мл кислорода, то запасов его хватает всего на 5-6 мин. Даже при дыхании чистым кислородом его резерв составляет всего 3,3 л. Такого количества хватает всего на 10-12 мин. Известно, что кислород артериальной крови находится в двух состояниях – физически растворенном (около 3-4 мл на л) и непрочном соединении с Hb - оксигемоглобин (около 190-210 мл/л). Так как содержание гемоглобина в крови близко к 145-160 г/л, а каждый грамм гемоглобина способен связывать 1,34 мл кислорода, то кислородная емкость крови составляет 220 мл/л. В венозной крови содержание кислорода близко к 120-160 мл/л, и таким образом, артерио-венозная разница по кислороду составляет в среднем около 50 мл/л. Широкий разброс содержания кислорода в венозной крови связан с тем, что различные органы потребляют неодинаковое количество кислорода. Так, артериовенозная разница для миокарда составляет 120, мозга – 60, печени – всего 15 мл/л. Из физики известно, что концентрация кислорода в атмосферном воздухе близка к 21%, однако для медицины более важным показателем является парциальное давление этого газа (рО2), которое пропорционально содержанию кислорода в смеси. рО2 на уровне моря равно 159, в альвеолярном воздухе – около 100, в артериальной крови 90-95, в венозной крови – 40, в тканях – около 40 мм рт.ст. (33-53 мм). При парциальном давлении кислорода в альвеолярном воздухе в 100-110 мм рт.ст. сатурация гемоглобина кислородом равна 96-98%, для венозной крови этот показатель составляет 73-75%. Снижение раО2 до 50 мм рт.ст. уменьшает степень сатурации гемоглобина до значений, ниже 80%. Здесь же отметим, что рСО2 альвеолярного воздуха, раСО2, рвСО2 и рН венозной крови равны, соответственно, 38, 40, 46 мм рт.ст. и 7,36 ед. Основное назначение кислорода заключается в использовании его как акцептора электронов и протонов (ионов водорода) в процессах тканевого дыхания и связанного с ним окислительного фосфорилирования. Если потребности в АТФ не удовлетворяются, то развивается состояние энергетического голода, приводящее к закономерным последствиям в виде метаболических, функциональных и морфологических нарушений вплоть до гибели клеток. Одновременно в организме возникают разнообразные приспособительные и компенсаторные реакции. Совокупность всех этих процессов получила наименование гипоксии. Гипоксия (hypo - под, ниже, oxydation - окисление) - это типовой патологический процесс, который развивается в результате недостаточного снабжения тканей кислородом или нарушения его утилизации в процессе биологического окисления. Снижение напряжения кислорода в крови получило наименование гипоксемии. Истоки изучения кислородного голодания берут свое начало в 16 веке, когда испанец Де Акоста описал симптомокомплекс, возникший у человека в условиях высокогорья, который заключался в нарушении функций ЦНС, сердечно-сосудистой и дыхательной систем. Де Акоста связал эти нарушения с понижением содержания кислорода в горах. Последующие многочисленные сведения о проявлениях гипоксии почерпнуты из наблюдений над альпинистами при восхождениях на горные вершины, воздухоплавателями во время полетов на воздушных шарах и дирижаблях, пилотах во время высотных полетах, над добровольцами, находившимися в барокамерах или дышавших различными гипоксическими смесями, а также из экспериментов над животными. Так, Бэр в 1878 г. наблюдал развитие тяжелого гипоксического состояния у воробья, находившегося в условиях низкого барометрического давления, близкого к 210 мм рт.ст. (нормальное барометрическое давление равно 760 мм рт.). Такое тяжелое состояние животного при данном атмосферном давлением Бэр связал с низким парциальным давлением кислорода в воздухе, равном 41 вместо 159 мм рт. ст., при котором содержание кислорода в артериальной крови составляло 100 вместо 200 мл/л. Основы разработок проблемы гипоксии заложил И.М. Сеченов фундаментальными исследованиями по физиологии дыхания и газообменной функции крови в условиях нормального, пониженного и повышенного барометрического давления. В.С. Пашутин создал общее учение о кислородном голодании как одной из основных проблем общей патологии. П.А. Альбицкий установил значение фактора времени и роли компенсаторных факторов в развитии гипоксии. Значительный вклад в проблему гипоксии внесли выдающиеся отечественные (Н.Н. Сиротинин, И.Р. Петров и другие) и зарубежные (Д. Холден, Д. Баркрофт и другие) исследователи. В настоящее время гипоксические состояния у человека и животных моделируются путем «подъема» на высоту в барокамерах (гипобарическая гипоксия) или вдыхания гипоксических смесей (нормобарическая гипоксия). В опытах на животных возможно применение тканевых или кровяных ядов. Классификация гипоксических состояний в зависимости от этиологических факторов и патогенеза выделяют следующие основные типы гипоксии: Экзогенная нормобарическая; гипобарическая. Эндогенная (2) Респираторная (дыхательная); (3) Циркуляторная (сердечно-сосудистая); (4) Гемическая (кровяная); (5) Тканевая; (6) Перегрузочная (гипоксия нагрузки); (7) Субстратная; (8) Смешанная. По критерию распространенности гипоксических состояний выделяют местную общую гипоксию. По клиническому течению, скорости развития и длительности течения выделяют молниеносную острую подострую хроническую гипоксию. По степени тяжести различают легкую умеренную тяжелую критическую (смертельную) гипоксию.
|