Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные значения и собственные векторы матрицы





 

Определение. Рассмотрим квадратную матрицу . Пусть для некоторого ненулевого вектора и числа l выполняется равенство

АХ = λ Х. (8)

Тогда вектор называется собственным вектором матрицы А, а числоназывается собственным значением этой матрицы.

Определение. Уравнение называется характеристическим уравнением.

Определение. Корнем многочлена называется значение переменной, обращающее этот многочлен в нуль. Корнем матричного многочлена будет матрица, обращающая этот многочлен в нулевую матрицу.

 

Теорема 1. Собственные значения матрицы А являются корнями характеристического многочлена .

Верно и обратное: каждый корень характеристического многочлена матрицы А будет её собственным значением.

Теорема 2. Если – собственные значения матрицы А, то:

1)

2)

Эти равенства можно использовать в качестве проверки вычисленных собственных значений.

Теорема 3. (Теорема Гамильтона – Кэли).

Любая квадратная матрица является корнем своего характеристического многочлена, т. е. , где под нулём понимается нулевая матрица, а под свободным членом характеристического многочлена – этот свободный член, умноженный на единичную матрицу.

 

Пример 1. Найти собственные значения матрицы и проверить правильность решения по теореме 3. Проиллюстрировать теорему Гамильтона – Кэли.

Решение. Чтобы найти собственные значения, приравняем к нулю характеристический многочлен:

=0.

Корни квадратного уравнения: .

Сумма корней ; произведение корней .

Подставим матрицу А в характеристический многочлен:

.

В результате получили нулевую матрицу. Это и означает, что матрица является корнем своего характеристического многочлена.

 

Пример 2. Показать, что матрица является корнем своего характеристического многочлена.

Решение. ;

(.

Найдём характеристический многочлен матрицы:

.

Вычислим , для этого нужно найти

, и .

Тогда

.

 







Дата добавления: 2015-08-12; просмотров: 1617. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия