Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи для самостоятельного решения. Найти собственные значения и собственные векторы матрицы А:





Найти собственные значения и собственные векторы матрицы А:

4. ; 5. ; 6. ;

7. ; 8. ; 9. ;

10. ; 11. ; 12. .

 

Ответы к задачам 4 – 12:

4. , , .

5. , , .

6. , , .

7. , , , .

8. , , , .

9. , , , .

10. , , , .

11. , , , .

12. ,

, , .

 

II. ЛАБОРАТОРНАЯ РАБОТА

> restart:

Зададим матрицу и определим её тип.

> restart:

> with(linalg): with(LinearAlgebra):

Найдём характеристическую матрицу:

Характеристический многочлен:

Найдём следы двух матриц:

 

Найдём её собственные значения и собственные векторы:

 

> eigenvalues(B);

> eigenvectors(B);

Здесь 5 – первое собственное значение кратности 1. В фигурных скобках находится соответствующий собственный вектор (2,1). Соответственно -1 – это второе собственное значение кратности 1, соответствующий собственный вектор (-1,1).

Зададим другую матрицу.

Проделайте с ней те же вычисления.

Теперь зададим матрицу 3-го порядка.

>

Разложим характеристический многочлен на множители:

Видно, что корнями являются числа 1 (два раза, т.е. кратность этого корня 2) и 2 (кратностью 1). Найдём собственные значения матрицы М, которые и являются корнями характеристического многочлена. Для этого решим уравнение =0:

Можно задать корни в виде списка:

Найдём собственные векторы матрицы М:

Выведен список l, первым элементом которого является столбец собственных значений, а вторым – матрица, строки которой представляют собой соответствующие собственные векторы. Выделим элементы этого списка.

Теперь выделим строки матрицы:

Задание 1. Проделайте те же действия над матрицей .

ПРОВЕРКА ВЫПОЛНЕНИЯ ТЕОРЕМ 2 И 3

1) Проверим выполнение теоремы 2, т.е. убедимся в том, что сумма собственных значений матрицы М равна её следу, а их произведение равно определителю этой матрицы.

2) Проверим выполнение теоремы 3 (теоремы Гамильтона-Кэли), т.е. убедимся в том, что квадратная матрица М является корнем своего характеристического многочлена. Подставим матрицу М в многочлен ст.

Для формирования свободного члена зададим единичную матрицу и умножим её на -2.

Найдём квадрат матрицы М:

Теперь найдём куб:

Составим многочлен в точке М и убедимся в том, что он равен нулю (нулевой матрице).

ЗАДАНИЯ.

Найти характеристические матрицы и многочлены следующих матриц:

6) ; 9) ; 12) .

Вычислить их собственные значения и собственные векторы. Проверить выполнение теорем 2 и 3.







Дата добавления: 2015-08-12; просмотров: 728. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия