Нахождение собственных векторов
Для нахождения собственных векторов преобразуем равенство (8) АХ = λ Х, перепишем его в виде АХ − λ Х = 0, или АХ − λ ЕХ = 0 Þ (А − λ Е) Х = 0. (9) Здесь 0 – нулевая матрица. Перейдя к координатной форме, получим однородную систему линейных уравнений. В случае , где – собственные значения, её главный определитель равен нулю (). Поэтому эта система обязательно имеет ненулевые (нетривиальные) решения, так как равный нулю определитель имеет пропорциональные строки, и : (10) Подставляя поочерёдно значения , полученные из характеристического уравнения, в уравнения системы (10), найдем n собственных векторов. Собственный вектор можно определить с точностью до постоянного множителя. 3.1. Случай Матричное уравнение (А − λ Е) Х = 0 имеет развёрнутую форму: . (11) Восстановим систему уравнений: (12) Это линейная однородная система. При и её главный определитель равен нулю. Поскольку частные определители содержат нулевые столбцы, они также равны нулю. По теореме Крамера эта система имеет бесчисленное множество решений. Ранг матрицы А − λ Е равен единице, и одно уравнение пропорционально другому, т.е. оно является лишним. Пример 1. Найти собственные значения и собственные векторы линейного преобразования с матрицей . Решение. Составим характеристическое уравнение: . Найдём собственные значения λ, решая уравнение . Его корни λ1 = 6, λ2 = –1. Это собственные значения матрицы А. Собственные векторы находятся из двух систем уравнений и . Главный определитель каждой из этих систем равен нулю. Поэтому каждая из этих однородных систем сводится к одному уравнению. 1) При λ1 = 6 имеем систему , которая сводится к уравнению . Из уравнения следует: , или . В качестве собственного вектора, соответствующего собственному значению λ1 = 6, можно взять вектор . Подойдёт также любой вектор, кратный Х 1, например, или . 2) При λ 2 = –1 система имеет вид , она приводится к одному уравнению и . Собственный вектор, соответствующий данному собственному значению λ;2 = –1, (или любой вектор, кратный ему). Ответ: , , , .
3.1. Случай Пример 2. Найти собственные значения и собственные векторы линейного преобразования с матрицей . Решение. Составим характеристическое уравнение . Разложим определитель по элементам первой строки: . Раскрыв скобки и приведя подобные члены, получим уравнение третьей степени: ;
. Чтобы решить это уравнение, поступим следующим образом. Методом подбора найдём один из корней уравнения λ1, которым может быть один из делителей свободного члена. Нетрудно убедиться в том, что λ1 = 3 есть корень уравнения. Это значит, что левая часть уравнения делится без остатка на разность (λ − 3), т. е. . Определим два других корня из уравнения . По теореме Виета получим следующие два корня: λ2 = 6, λ3 = –2. Для нахождения собственных векторов нужно решить три системы уравнений, последовательно подставляя полученные собственные значения. 1) При λ1 = 3 имеем однородную систему уравнений или Для решения системы составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем ее к следующему виду ~ ~ . Поскольку две последние строки пропорциональны, одну из них можно удалить, тогда исходная система примет вид: . Решая эту систему, находим . Положим , тогда получим собственный вектор , соответствующий собственному значению λ1=3. 2) При λ2 = 6 имеем систему уравнений . Составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем её к следующему виду ~ ~ . Последнюю строку матрицы можно удалить, а вторую строку разделить на (–4), тогда придём к системе двух уравнений с тремя неизвестными, одно из которых может быть выбрано произвольно: . Пусть , тогда , . Собственный вектор . 3) Точно так же находим собственный вектор , соответствующий собственному значению λ3 = –2.
Следует заметить, что матрица преобразования А в данном примере является симметрической, так как её элементы, расположенные над главной и под главной диагональю, одинаковы. В этом случае, в чём легко убедиться, собственные векторы взаимно ортогональны: , , . Ответ: λ1 = 3, λ2 = 6, λ3 = –2, , , .
|