Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СЛУЧАЙНЫЕ ПОГРЕШНОСТИ





ОСНОВЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ

ЭКСПЕРИМЕНТА

 

ИЗМЕРЕНИЯ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

 

В каждой лабораторной работе по курсу "Физика" студент измеряет одну или несколько величин. Измерение называется прямым, если измеряемая величина непосредственно сравнивается с эталоном. Такое сравнение, как правило, происходит с помощью измерительного прибора. Например, длина тела измеряется с помощью микрометра или штангенциркуля, сила тока измеряется амперметром и т.д. Результат косвенного измерения является известной функцией величин, получаемых с помощью прямых измерений. В процессе прямого измерения получают ряд наблюдений х1, х2, …, хn измеряемой величины х. Результаты отдельных наблюдений содержат погрешности измерений и нуждаются в дополнительной обработке. Виды погрешностей: случайные, систематические, промахи.

 

 

СЛУЧАЙНЫЕ ПОГРЕШНОСТИ

 

При наличии случайных погрешностей результат отдельного наблюдения хk измеряемой величины х является случайной величиной. В этом случае результаты наблюдений х1, х2, …, хn одной и той же величины х различны. В качестве результата измерения принимается среднее арифметическое значение результатов наблюдений:

. (1.1)

Предел результата измерения при n®¥ называется математическим ожиданием m:

. (1.2)

Случайную величину х, являющуюся результатом отдельного наблюдения, можно задать с помощью функции распределения f(х) (функции плотности вероятности):

или , (1.3)

где dP - вероятность попадания случайной величины в интервал
(х, х+dx) шириной dx.

Если случайная величина зависит от большого количества неконтролируемых изменяющихся причин, то она подчиняется нормальному распределению или распределению Гаусса. Функция распределения Гаусса для случайной величины х с математическим ожиданием m описывается формулой:

, (1.4)

 

где - дисперсия распределения. Величина называется стандартным или среднеквадратичным отклонением. График функции распределения Гаусса показан на рис.1.

Математическое ожидание m определяет положение оси симметрии кривой распределения, а величина s характеризует разброс х относительно m.

С учетом формулы (1.3) вероятность Р попадания результата наблюдения х в интервал (х1, х2) равна

Рассмотрим интервал, в центре которого находится математическое ожидание m, а полуширина равна

, (1.5)

где - некоторое число. Вероятность Р наблюдения случайной величины х, подчиняющейся нормальному распределению, в таком интервале определяется формулой:

(1.6)

Вычисление интеграла в формуле (1.6) показывает, что при
kP = 1,0 вероятность Р = 0,68, т.е. 68% результатов наблюдений лежат внутри интервала (). Соответственно, при kP = 2,0 получим Р = 0,95, а при kP = 3,0 вероятность Р = 0,997.

Пусть наличие случайных погрешностей приводит к тому, что результат наблюдения х измеряемой величины подчиняется нормальному распределению. Параметры m и s этого распределения экспериментатор не знает. В процессе измерения получают n результатов наблюдений: х1, х2, …, хn, т.е. получают некоторую выборку значений х из генеральной совокупности допустимых значений. Определяя результат измерения по формуле (1.1), находят выборочную оценку величины m. Выборочную оценку дисперсии нормального распределения результатов наблюдений получают по формуле

, (1.7)

где S(х) - выборочная оценка стандартного отклонения результата наблюдения; n - число наблюдений.

Если результат отдельного наблюдения х является случайной величиной, подчиняющейся нормальному распределению с дисперсией D(х), то результат измерения , определяемый по формуле (1.1), также подчиняется нормальному распределению с дисперсией . Соответственно, выборочная оценка стандартного отклонения результата измерения равна

. (1.8)

Теоретически показано, что для каждой вероятности Р (меры доверия) можно построить такой доверительный интервал (), что математическое ожидание m случайной величины х окажется внутри этого интервала с вероятностью Р. Полуширина такого доверительного интервала определяется формулой:

, (1.9)

где S() находим по формуле (1.8), а - коэффициент Стьюдента, величина которого зависит от вероятности Р и числа степеней свободы n (см. таблицу Приложения). Число степеней свободы n связано с числом наблюдений n формулой: . Можно показать, что в формуле (1.5) коэффициент

. (1.10)

При наличии только случайных погрешностей запись результата измерения: .

 

 







Дата добавления: 2015-08-12; просмотров: 382. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия