СЛУЧАЙНЫЕ ПОГРЕШНОСТИ
ОСНОВЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА
ИЗМЕРЕНИЯ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ
В каждой лабораторной работе по курсу "Физика" студент измеряет одну или несколько величин. Измерение называется прямым, если измеряемая величина непосредственно сравнивается с эталоном. Такое сравнение, как правило, происходит с помощью измерительного прибора. Например, длина тела измеряется с помощью микрометра или штангенциркуля, сила тока измеряется амперметром и т.д. Результат косвенного измерения является известной функцией величин, получаемых с помощью прямых измерений. В процессе прямого измерения получают ряд наблюдений х1, х2, …, хn измеряемой величины х. Результаты отдельных наблюдений содержат погрешности измерений и нуждаются в дополнительной обработке. Виды погрешностей: случайные, систематические, промахи.
СЛУЧАЙНЫЕ ПОГРЕШНОСТИ
При наличии случайных погрешностей результат отдельного наблюдения хk измеряемой величины х является случайной величиной. В этом случае результаты наблюдений х1, х2, …, хn одной и той же величины х различны. В качестве результата измерения принимается среднее арифметическое значение результатов наблюдений: . (1.1) Предел результата измерения при n®¥ называется математическим ожиданием m: . (1.2) Случайную величину х, являющуюся результатом отдельного наблюдения, можно задать с помощью функции распределения f(х) (функции плотности вероятности): или , (1.3) где dP - вероятность попадания случайной величины в интервал Если случайная величина зависит от большого количества неконтролируемых изменяющихся причин, то она подчиняется нормальному распределению или распределению Гаусса. Функция распределения Гаусса для случайной величины х с математическим ожиданием m описывается формулой: , (1.4)
где - дисперсия распределения. Величина называется стандартным или среднеквадратичным отклонением. График функции распределения Гаусса показан на рис.1. Математическое ожидание m определяет положение оси симметрии кривой распределения, а величина s характеризует разброс х относительно m. С учетом формулы (1.3) вероятность Р попадания результата наблюдения х в интервал (х1, х2) равна Рассмотрим интервал, в центре которого находится математическое ожидание m, а полуширина равна , (1.5) где - некоторое число. Вероятность Р наблюдения случайной величины х, подчиняющейся нормальному распределению, в таком интервале определяется формулой: (1.6) Вычисление интеграла в формуле (1.6) показывает, что при Пусть наличие случайных погрешностей приводит к тому, что результат наблюдения х измеряемой величины подчиняется нормальному распределению. Параметры m и s этого распределения экспериментатор не знает. В процессе измерения получают n результатов наблюдений: х1, х2, …, хn, т.е. получают некоторую выборку значений х из генеральной совокупности допустимых значений. Определяя результат измерения по формуле (1.1), находят выборочную оценку величины m. Выборочную оценку дисперсии нормального распределения результатов наблюдений получают по формуле , (1.7) где S(х) - выборочная оценка стандартного отклонения результата наблюдения; n - число наблюдений. Если результат отдельного наблюдения х является случайной величиной, подчиняющейся нормальному распределению с дисперсией D(х), то результат измерения , определяемый по формуле (1.1), также подчиняется нормальному распределению с дисперсией . Соответственно, выборочная оценка стандартного отклонения результата измерения равна . (1.8) Теоретически показано, что для каждой вероятности Р (меры доверия) можно построить такой доверительный интервал (), что математическое ожидание m случайной величины х окажется внутри этого интервала с вероятностью Р. Полуширина такого доверительного интервала определяется формулой: , (1.9) где S() находим по формуле (1.8), а - коэффициент Стьюдента, величина которого зависит от вероятности Р и числа степеней свободы n (см. таблицу Приложения). Число степеней свободы n связано с числом наблюдений n формулой: . Можно показать, что в формуле (1.5) коэффициент . (1.10) При наличии только случайных погрешностей запись результата измерения: .
|