Теоретико – вероятностный подход к обработке неопределенностей
(плохо определенной информации) Pi = (Ci→Ri, Ki) Ei→Hi Ei – свидетельство Hi – гипотеза Pi (Hiǀ Ei) P = (E→H) P(HǀE) Формула Байеса P = (HǀE) = P (EǀH) Модификация Поделим - шанс справедливости гипотезы H - Условный шанс – Модифицированная формула Байеса – E-контр свидетельство – E-свидетельство , если свидетельства независимы , i=1,n , j=1,m ) P=P(H) P (HǀEi) = P(EiǀH) Pi+=P(Ei H) P(Ei) = P(Ei H)*P(H)+P(Ei H)*P(˥H) Pi-= P(Ei H) = БЗ – Априорная вероятность – Свидетельство – Номер свидетельства Пример: <Грипп, P, 2, {(1: 0,99; 0,01); (2: 0,9; 0,1)}> 1. Нет эпидемии P=0,01 a) E1(↑t) P(HǀE1)= = b) E2(Насморк) P(HǀE2)= = c) E1, E2 P(Hǀ E1,E2) 2. Эпидемия P=0,1 a) P(HǀE1)=0,9 b) P(HǀE2)=0,5 c) P(Hǀ E1,E2)=1
|