Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Ньютона для системы нелинейных уравнений





В основе метода Ньютона для системы уравнений лежит использование разложения функ­ций в ряд Тейлора, причем члены, содержащие вторые производные (и производ­ные более высоких порядков), отбрасываются. Пусть приближенные значения неизвестных системы (например, полученные на предыду­щей итерации) равны соответственно . Задача состоит в нахождении приращений (по­пра­вок) к этим значениям , благодаря которым решение исходной системы за­пи­шется в виде: . Проведем разложение левых частей уравнений исходной системы в ряд Тэйлора, ограничи­ва­ясь лишь линейными членами относительно приращений:

Поскольку левые части этих выражений должны обращаться в нуль, то можно приравнять к ну­лю и правые части:

 

в матричном виде:

Значения и их производные вычисляются при .

Определителем последней системы является якобиан:

.

Для существования единственного решения системы якобиан должен быть отличным от нуля на каждой итерации.

Таким образом, итерационный процесс решения системы нелинейных уравнений методом Ньютона состоит в определении приращений к значениям неизвестных на каждой итерации. Счет прекращается, если все приращения становятся малыми по абсолютной величине:

.

В методе Ньютона также важен удачный выбор начального приближения для обеспечения хо­рошей сходимости. Сходимость ухудшается с увеличением числа уравнений системы. Итак, за расчетную формулу примем

или .

Сходимость метода Ньютона для СНУ. Теорема. Пусть в некоторой окрестности решения системы нелинейных уравнений функции дважды непрерывно дифференцируемы и определитель матрицы Якоби не равен нулю. Тогда найдется такая малая – окрестность решения , что при произвольном выборе начального приближения из этой окрестности, итерационная последовательность метода Ньютона не выходит за пределы окрестности и справедлива оценка: , – метод сходится с квадратичной скоростью.

В качестве примера можно рассмотреть использование метода Ньютона для решения систе­мы двух уравнений: , где и – непрерывно дифференцируемые функции. Пусть начальные значения неизвестных равны . После разложения исходной системы в ряд Тэйлора можно получить:

Предположим, что якобиан системы при и отличен от нуля:

.

Тогда значения и можно найти, используя матричный способ следующим образом:

.

Вычислив значения и можно найти и следующим образом:

Величины, стоящие в правой части, вычисляются при и .

Критерий окончания. Будем считать, что заданная точность достигнута, если или .


 








Дата добавления: 2015-08-12; просмотров: 2005. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия