Предсказания основываются на том, что было в прошлом, как и на том, что происходит сейчас. То есть различный вход будет давать различные предсказания, основываясь на предыдущем контексте. Регион НТМ обучается использовать настолько ранний контекст, насколько это нужно и может хранить в себе контекст и за короткое и за долгое время. Такая возможность известна как «память переменного порядка». Например, вспомним о такой всем известной [в США] речи как Геттисбергское послание.
[Короткая (всего 268 слов в 10 предложениях), но самая знаменитая речь президента Линкольна, которую он произнес 19 ноября 1863 на открытии национального кладбища в Геттисберге. Речь начиналась словами "Восемь десятков и семь лет минуло с того дня, как отцы наши создали на этой земле новую нацию, основанную на идеалах Свободы и свято верящую, что все люди созданы равными...", а заканчивалась знаменитыми словами о том, что демократия является "властью народа, волей народа, и для народа". Эта речь полностью высечена на пьедестале памятника Линкольну в г. Вашингтоне.]
Чтобы предсказать в этой речи следующее слово, знания только текущего слова явно не достаточно. Например, за словом «и» следует и слово «семь» и слово «свято» уже в самом первом предложении. Но иногда, даже небольшой дополнительный кусочек контекста помогает сделать правильное предсказание. Услышав «восемь десятков и» уже можно предсказать слово «семь» из этой речи. Кроме того, бывают еще повторяющиеся фразы, и для них требуется гораздо более продолжительный во времени контекст, чтобы понять в каком месте речи вы находитесь и что будет дальше.