Строение и общие свойства аминокислот.
Министерство образования Республики Беларусь
УО МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ
КАФЕДРА ХИМИЧЕСКОЙ ТЕХНОЛОГИИ
БИОЛОГИЧЕСКАЯ ХИМИЯ КОНСПЕКТ ЛЕКЦИЙ для студентов специальностей
БЕЛКИ
Могилев, 2004 УКД ББК Рассмотрен и рекомендован к изданию кафедрой Протокол № __ от «__»_____________2004 г. Рассмотрен и рекомендован к изданию секцией выпускающих кафедр. Протокол № __ от «__»_____________2004 г. Составители: доцент Макасеева О.Н. Рецензент: доцент Шуляк Т.Л. Ó Могилевский государственный университет продовольствия Содержание 1 БЕЛКИ.. 4 1.1 Строение и общие свойства аминокислот. 4 1.2 Классификация аминокислот. 7 1.3 Кислотно-основные свойства аминокислот. 11 1.4 Спектры поглощения аминокислот. 14 1.5 Химические реакции аминокислот. 14 1.6 Пептиды. 15 1.7 Белки. 19 1.8 Строение белковой молекулы. 20 1.9 Физико-химические свойства белков. 28 1.10 Выделение белков и установление их однородности. 33 1.11 Классификация белков. 35 2 НУКЛЕИНОВЫЕ КИСЛОТЫ. 38 2.1 Состав нуклеиновых кислот. 38 2.2 Нуклеозиды. 41 2.3 Нуклеотиды.. 42 2.4 Первичная структура нуклеиновых кислот. 45 2.5 Вторичная и третичная структуры ДНК. 46 2.6 Структура РНК.. 49 Рекомендуемая литература. 50 БЕЛКИ Строение и общие свойства аминокислот. Основной структурной единицей белков являются a-аминокислоты. В природе встречается примерно 300 аминокислот. В составе белков найдено 20 различных a-аминокислот (одна из них – пролин, является не амино -, а имино кислотой). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами. a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у a-углеродного атома замещен на аминогруппу (–NН2), например: Различаются аминокислоты по строению и свойствам радикала R. Радикал может представлять остатки жирных кислот, ароматические кольца, гетероциклы. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме. Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимером, и обладают химической индивидуальностью. Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например: В молекулах всех природных аминокислот (за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L - и D -стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы). Число возможных стереоизомеров ровно 2n, где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров. В качестве стандарта при определении L и D -конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида. Расположение в проекционной формуле Фишера NH2-группы слева соответствуют L -конфигурации, а справа – D -конфигурации.
Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения. В составе белков обнаруживаются только L -изомеры аминокислот. L и D формы аминокислот оказывают различное физиологическое воздействие на организм человека – различаются по вкусу: D- изомеры сладкие, L -формы горькие или безвкусные. Взаимопревращение D и L -энатиомеров называется рацемизацией. Превращение D Û L – это один из метаболических процессов в живых организмах, причем равновесие этого метаболического процесса сильно смещено в сторону образования L -формы. Когда метаболические процессы после смерти организма прекращаются, процесс D Û L продолжается самопроизвольно с очень малой скоростью, переводя для каждой аминокислоты к соотношению D / L -энантиомеров, характерному для неметаболического равновесия. Для достижения такого равновесия могут потребоваться десятки тысяч лет. Новый метод определения геологического возраста образца основан на измерении соотношения D / L -энантиомеров аспарагиновой кислоты в образцах окаменелых костей. Результаты, полученные методом D / L -датирования, хорошо дополняют другие данные, полученные, например, радиоуглеродным методом. Кроме 20 стандартных аминокислот встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными. Около 150 из них уже выделены. Эти аминокислоты образуются после завершения синтеза белка в рибосоме клеток путем посттрансляционной химической модификации. Один из примеров особенно важной модификации – окисление двух-SН–групп цистеиновых остатков с образованием аминокислоты цистина, содержащей дисульфидную связь. Так же легко происходит и обратный переход. Таким путем образуется одна из важнейших окислительно-востановительных систем живых организмов. В больших количествах цистин содержится в белках злаковых – клейковине, в белках волос, рогов. Другие примеры аминокислотной модификации-гидроксипролин и гидроксилизин, которые входят в состав коллагена-основного белка соединительной ткани животных. В состав белка протромбина (белок свертывания крови) входит
|