Студопедия — Эмульгаторы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эмульгаторы






В эту группу пищевых добавок (функциональный класс 9) входят вещества, которые, будучи добавленными к пищевому продукту, обеспечивают возможность образования и сохранения однородной дисперсии двух или более несмешивающихся веществ.

Строго говоря, термины "эмульгатор" или "эмульгирующий агент" подразумевают химическое вещество, способное (при растворении или диспергировании в жидкости) образовывать и стабилизировать эмульсию, что достигается благодаря его способности концентрироваться на поверхности раздела фаз и снижать межфазное поверхностное натяжение. Такая способность связана с поверхностно-активными свойствами, поэтому применительно к рассматриваемой группе пищевых добавок термины эмульгатор, эмульгирующий агент и поверхностно-активное вещество (ПАВ) могут рассматриваться как синонимы.

Хотя основными дефинициями эмульгаторов являются образование и поддержание в однородном состоянии смеси несмешиваемых фаз, таких как масло и вода, в других пищевых системах применение

этих добавок может быть связано не столько с эмульгированием, сколько с их взаимодействием с такими пищевыми ингредиентами, как белки, крахмал и др.

В качестве первых пищевых эмульгаторов использовались натуральные вещества, в частности, камеди, сапонины, лецитин и др.

Некоторые из них сохранили свою популярность, однако наиболее широко в промышленности используются сегодня синтетические эмульгаторы или продукты химической модификации природных веществ, промышленное производство которых начало развиваться в 20-е гг. XX в.

По химической природе молекулы классических эмульгаторов, являющихся поверхностно-активными веществами, имеют дифильное строение, то есть содержат полярные гидрофильные и неполярные гидрофобные группы атомов, которые, будучи связанными с неполярным соединительным звеном (основанием), отделены друг от друга и располагаются на противоположных концах молекулы. Первые (гидрофильные) обеспечивают растворимость в воде, вторые (гидрофобные) — в неполярных растворителях (см. рис. 4.2 на с. 193). Дифильное строение молекул эмульгаторов обусловливает их склонность к формированию ассоциатов в объемной фазе растворителя, называемых мицеллами.

В зависимости от особенностей строения молекулы эмульгатора, которые будут проявляться в соотношении между гидрофильными свойствами полярной группы и липофильными свойствами неполярной части молекулы ПАВ, могут образовываться как классические мицеллы в воде, так и обращенные мицеллы в неполярных растворителях (маслах и жирах), что схематично отображено на рис. 9.7 (см. также рис. 4.3).


Рис. 9.7. Схема образования мицелл

Склонность к формированию ассоциатов мицеллярного типа, равно как и другие проявления поверхностно-активных свойств, зависят от химического строения молекул ПАВ и, прежде всего, от соотношения размеров полярной и неполярной частей молекулы, которое выражается в показателе гидрофильнолипофильного баланса (ГЛБ). Чем выше гидрофильность, тем больше величина ГЛБ; при этом, в общем случае, тем ярче проявляется способность молекул ПАВ к образованию классических мицелл и стабилизации прямых эмульсий (масло/вода) и наоборот, чем ниже гидрофильность и, следовательно, меньше значение ГЛБ, тем выше способность к ассоциации в виде обращенных мицелл и стабилизации обратных эмульсий (вода/масло).

Классификация эмульгаторов

Известно несколько способов классификации эмульгаторов по различным признакам (табл. 9.11).

В анионных (анионактивных) эмульгаторах гидрофильными группами могут являться ионные формы карбоксильных и сульфонильных групп, в катионактивных — ионные формы соединений аммония с третичным или четвертичным атомом азота (третичные или четвертичные аммониевые основания и соли), в неионогенных эмульгаторах — гидроксильные и кетогруппы, эфирные группировки и др. В цвиттер-ионных эмульгаторах роль гидрофильных групп выполняют ионные группировки, имеющие одновременно и положительный, и отрицательный заряды. Например, в молекуле лецитина гидрофильная группировка состоит из отрицательно заряженного остатка фосфорной кислоты и катионной группы четвертичного аммониевого основания холина.

Основные виды пищевых эмульгаторов — неионогенные ПАВ. К исключениям относится цвиттер-ионный лецитин и анионактивные лактилаты.

По химической природе это производные одноатомных и многоатомных спиртов, моно- и дисахаридов, структурными компонентами которых являются остатки кислот различного строения.

Обычно ПАВ, применяемые в пищевой промышленности, являются не индивидуальными веществами, а многокомпонентными смесями и выпускаются под фирменными наименованиями. Химическое название препарата при этом соответствует лишь основной части продукта.

В зависимости от особенностей химической природы эмульгатора, а также специфики пищевой системы, в которую он вводится, некоторые из представителей этого функционального класса пищевых добавок могут иметь смежные технологические функции, например, функции

Таблица 9.11. Классификация эмульгаторов

Классификационный признак Основные подклассы
Заряд поверхностно-активной части  
отрицательный Анионные
положительный Катионные
нейтральный Неионогенные
положительный или отрицательный (в зависимости от рН) Амфотерные
и положительный, и отрицательный (оба) Цвитгер-ионные
Цирофильно-липофильный баланс  
4-6 Эмульгаторы вода/масло
7-9 Смачивающие агенты
8-18 Эмульгаторы масло/вода
Растворимость  
в воде Водорастворимые (гидрофильные, липофобные)
в масле Маслорастворимые (липофильные, гидрофобные)
Функциональные группы  
— COOH Кислоты
-OH Спирты
  Эфиры
и т.д.  

стабилизаторов (функциональный класс 21) или антиоксидантов (функциональный класс 5).

Некоторые характеристики и общие свойства основных групп пищевых эмульгаторов представлены в табл. 9.12.

Общим свойством, объединяющим эмульгаторы и отличающим их от пищевых добавок других классов, является поверхностная активность. В зависимости от особенностей состава и свойств пищевой системы, в которую преднамеренно вводится эмульгатор, его поверхностная активность может проявляться в различных, главным образом, технологических изменениях.

Обобщенно основными технологическими функциями эмульгаторов в пищевых системах являются:

Таблица 9.12. Некоторые характеристики пищевых эмульгаторов

Эмульгаторы Код ГЛБ Растворимость Мицелло-образование
в масле в воде
Лецитин Е322 3-4 Р Д Обратные мицеллы
Модифицированный лецитин   7-12 Р Д Мицеллы
Моно- и диглицериды Е471 3-4 Р Д Обратные мицеллы
Ацетилированные моноглицериды Е472а 2-3 Р Н Тоже
Лактилированные эфиры моно- и диглицеридов Е472b 3-4 Р Н — " —
Эфиры диацетилвинной кислоты с моно- и диглицеридами Е472е 8-10 Р Д Мицеллы
Эфиры сахарозы Е473 3-16 Д Д Мицеллы, обратные мицеллы
Стеароиллактат натрия Е481 10-12 Р Д Мицеллы
Стеароиллактат кальция Е482 5-6 Р Д Обратные мицеллы
Сорбитан моностеарат Е491 3-6 Р Д Тоже
Полисорбат 60 Е435 14-15 Р Р Мицеллы
Полисорбат 65 Е436 10-11 Р д Тоже
Полисорбат 80 Е433 14-15 Р Р — " —

Примечания: Р — растворимо,Д — диспергируемо, Н — нерастворимо.

— диспергирование, в частности эмульгирование и пенообразование;

— солюбилизация;

— комплексообразование с крахмалом;

— взаимодействие с белками;

— изменение вязкости;

— модификация кристаллов;

— смачивание и смазывание.

Липофильная (гидрофобная) часть дифильных молекул всех перечисленных в таблице добавок имеет одинаковую химическую природу и сформирована ацилами высших жирных кислот. Основные структурные отличия, обусловливающие различия поверхностно-активных свойств, связаны с особенностями химического строения гидрофильной (липофобной) части молекул представленных ПАВ, которые отражаются в значениях гидрофильнолипофильного баланса.

Основные группы пищевых ПАВ

Моно-, диацилглицерины и их производные (Е471, Е472а—g). Они являются наиболее известной группой эмульгаторов, промышленное производство которых началось в 20-е гг. XX в. Сегодня их доля в общем потреблении пищевых эмульгаторов составляет около 60%.

В группу пищевых добавок глицеридной природы входят неполные ацилглицерины (глицериды), получаемые в промышленности глицеролизом жиров и масел или этерификацией глицерина высокомолекулярными жирными кислотами, а также продукты их этерификации по первичной гидроксильной группе пищевыми низкомолекулярными кислотами — уксусной, молочной, винной, диацетилвинной, лимонной.

Известны различные типы моноглицеридов, которые, в зависимости от вида исходного жирового сырья и технологии получения, могут содержать от 40 до 60% фракции моноэфира в смеси с ди- (34—50%) и триглицеридами (3,5—10%) со значениями йодного числа от 1 до 100% иода и температурой плавления от 40 до 70°С.

При молекулярной дистилляции продуктов глицеролиза получают дистиллированные моноглицериды, содержащие не менее 90% моноэфира, представляющего собой смесь α- и β-кристаллических форм, из которых наиболее активной с позиций функциональности является а-фор-ма. Содержание а-формы может изменяться в интервале 40—90%.

Общая формула, объединяющая эту группу добавок, может быть представлена следующим образом:

 

В качестве пищевых добавок разрешены 7 сложноэфирных модификаций неполных ацилглицеринов, представленных в табл. 9.13.

Три из них, как и исходные моно- (МГ) и диглицериды (ДГ), относятся к группе безопасных добавок, применяемых без ограничений. Для остальных допустимая суточная доза составляет 30 мг/кг, а для добавки Е472е даже 50 мг/кг массы тела человека.

Все добавки этой подгруппы являются липофильными неионогенными эмульгаторами.

Модификация моно- и диацилглицеринов пищевыми кислотами (табл. 9.13) позволяет направленно изменять ГЛБ молекул (см. табл. 9.12)

Таблица 9.13. Пищевые добавки глицеридной природы (R" — общей формулы ацилглицеринов — см. стр. 404)

Код Название R'' ДСД
Е471 Моно- и диглицериды жирных кислот *
Е472а Эфиры уксусной кислоты и моно-, диглицеридов жирных кислот   *
Е472b Эфиры молочной кислоты и моно-, диглицеридов жирных кислот   *
Е472с Эфиры лимонной кислоты и моно-, диглицеридов жирных кислот   *
E472d Эфиры винной кислоты и моно-, диглицеридов жирных кислот   0-30
Е472е Эфиры диацетилвинной кислоты и моно-, диглицеридов жирных кислот   0-50
Е472Г Смешанные эфиры винной и уксусной кислот и моно-, диглицеридов см. Е472а и E472d 0-30
E472g Эфиры янтарной кислоты и моноглицеридов   0-30

* совершенно безвредны, применяются без ограничений

и, следовательно, их поверхностную активность на границах раздела различных фаз.

Фосфолипиды. Наиболее популярными в этой группе являются природные лецитины (Е322), имеющие синтетический аналог под названием аммониевые фосфатиды (Е442).

В соответствии с директивой Европейского Совета лецитины представляют собой смесь фракций фосфатидов, полученную из животных или растительных объектов физическими методами, включающими использование ферментов, в которой содержание веществ, нерастворимых в ацетоне (собственно фосфолипидов), составляет не менее 56—60%.

Основными фракциями коммерческих лецитинов являются фосфатидилхолины, т. е. собственно лецитины (до 25%), фосфатидилэтаноламины (до 25%), фосфатидилсерины (до 15%), фосфатидил инозиты, фосфатидовые (фосфатидные) кислоты (5—10%).

Аммониевые фосфатиды представляют собой смесь аммониевых солей различных фосфатидных кислот, являющихся продуктами взаимодействия ортофосфорной кислоты с одним, двумя или тремя остатками ацетилглицеринов.

Общая формула и основные фракции природных и синтетических фосфолипидов представлены ниже:

 

Основным источником промышленного получения лецитинов для пищевой промышленности являются масличные культуры (главным образом, соя, реже — подсолнечник), откуда их выделяют при гидратации масел.

Принципиально возможны два способа модификации стандартных фосфолипидов — ферментативный и химический.

Продукты ферментативной модификации фосфолипазами А1 и А2 (гидролизованные фосфолипиды) представляют собой лизоформы (лизофосфатидилхолин, лизофосфатидилэтаноламин, и т. д.), полученные направленным отщеплением.

Под действием фосфолипазы В деэтерификация идет и в первом, и во втором положении; фосфолипазы С и D, не затрагивая ацилов высших

жирных кислот, осуществляют гидролиз в фосфорнокислой группе и приводят к образованию диацилглицеринов (фосфолипаза С) или фосфатидных кислот (фосфолипаза D):

 

Химическая модификация возможна по двум направлениям, к которым относятся: — обработка пероксидом водорода в присутствии молочной кислоты с образованием гидроксилированных лецитинов:

 

где — CH=CH-R — ацил кислоты, содержащий двойную связь; R' — ацил кислоты.

— получение ацетилированных производных:

 

где R и R' — ацилы кислот.

Все приемы модификации фосфолипидов приводят к изменению ГЛ Б, а, следовательно, и поверхностной активности, определяющей технологические функции фосфолипидов в различных пищевых системах. Значения ГЛБ для различных модификаций лецитина приведены ниже:

Стандартный  
Ацетилированный  
Гидролизованный  
Гидооксилиоованный  

В основе получения синтетических аналогов лежит глицеролиз растительных масел и жиров с последующим фосфорилированием образовавшихся неполных ацилглицеринов фосфорным ангидридом и нейтрализацией кислотных форм газообразным аммиаком:

 

В отличие от своих природных аналогов аммониевые фосфатиды не имеют статуса совершенно безвредных, применение их в пищевых продуктах регламентируется соответствующими директивами.

Особенности эмульгирующих свойств фосфолипидов обусловлены способностью образовывать и поддерживать в однородном состоянии как прямые, так и обратные эмульсии, что распространяет их использование на все виды пищевых эмульсий: от майонезов и различных салатных соусов (прямые эмульсии) до маргаринов различного жирнокислотного состава и разного содержания жировой фазы (обратные эмульсии).

Другой отличительной особенностью фосфолипидов как пищевых эмульгаторов является их способность образовывать липосомы —

липидные везикулы: частицы, формируемые концентрическими замкнутыми липидными бислоями с внутренним водным слоем, изолированным от внешней среды и содержащим, в зависимости от назначения липосом, различные включения, например, пептиды или белки. Использование липосомальных систем в пищевых продуктах связано с функциями защиты отдельных пищевых ингредиентов от внешнего воздействия (защита дрожжевых клеток от охлаждения в замороженных мучных полуфабрикатах и пицце), сохранения влаги (мороженое) или органических, например, вкусовых веществ (хлеб и бисквиты).

Поверхностная активность фосфолипидов на различных межфазных границах (твердое вещество/жидкость, жидкость/газ и т. д.) обусловливает эффективность их действия в многокомпонентных дисперсных системах, включая структурированные, в которых дефиниции этих добавок сводятся к изменению реологических свойств.

В отличие от большинства других пищевых добавок препараты фосфолипидов обладают высокой физиологической эффективностью, связанной с уменьшением уровня холестерина, улучшением функции печени и состояния центральной и периферической нервной системы, торможением процессов старения организма и нормализацией иммунобиологической реактивности организма. И хотя диетологи не относят фосфолипиды к незаменимым факторам питания, они являются физиологически ценными компонентами пищи, суточная потребность в которых составляет около 5 г.

Эфиры полиглицерина (Е475) представляют собой сложные эфиры жирных кислот с полиглицерином и могут быть описаны формулой:

 

Технология их получения основана на полимеризации глицерина с последующей этерификацией пищевыми жирами или высшими жирными кислотами (пальмитиновой, стеариновой, олеиновой).

Эфиры полиглицерина являются неионогенными ПАВ и могут проявлять как гидрофильные, так и липофильные свойства со значениями ГЛБ от 5 до 13, что зависит, в частности, от степени полимеризации (преимущественно, п = 1, 2, 3 или 4).

Их применение в пищевой промышленности связано с технологическими функциями эмульгаторов, пеногасителей, замутнителей, смазочных материалов. Основные объекты использования — хлебопекарные и кондитерские изделия, а также маргариновая продукция. ДСД эфиров полиглицерина, в общем случае, не должна превышать 25 мг на 1 кг массы тела человека в день.

Эфиры сахарозы (Е473) представляют собой смесь преимущественно моно-, ди- и триэфиров сахарозы с природными высшими жирными кислотами:

 

Получение этих добавок основано на реакции между сахарозой и метиловыми или этиловыми эфирами пищевых кислот жирного ряда в среде органического растворителя (диметилсульфоксида или диметилформамида), остаточное содержание которого в пищевой добавке не должно превышать 1 и 2 мг/кг (для диметилформамида и диметилсульфоксида соответственно).

Общее содержание эфиров должно составлять не менее 80% при контролируемом уровне содержания сахарозы, составляющем не более 5%. Добавки этой группы являются неионогенными эмульгаторами и характеризуются различной гидрофильностыб, зависящей от содержания моноэфира:

Содержание моноэфира            
Значение ГЛБ            

Эфиры сорбитана (Е491—Е496) — сложные эфиры шестиатомного спирта сорбита в ангидроформе (ангидросорбит) с природными высшими жирными кислотами — лауриновой, пальмитиновой, стеариновой, олеиновой. Сложные эфиры ангидросорбита и жирных кислот (табл. 9.14) имеют название сорбитаны (спаны или спены):

 

где R', R'', R'''; — атомы водорода или ацилы высших жирных кислот (см. табл. 9.14).

Статус пищевых добавок имеют шесть сорбитанов. Добавки этой подгруппы являются липофильными неионогенными эмульгаторами. ГЛБ для сорбитанмоностеарата лежит в интервале 3—6.

Таблица 9.14. Пищевые сорбитаны (см. формулу на с. 410)

Код Название R' R'' и R'''
Е491 Сорбитанмоностеарат   Н
Е492 Сорбитантристеарат    
Е493 Сорбитанмонолаурат   Н
Е494 Сорбитанмоноолеат   H
Е495 Сорбитанмонопальмитат   Н
Е496 Сорбитантриолеат    

Основные области использования — производство мучных кондитерских изделий, сливок для кофе, сухих дрожжей. В производстве маргаринов эти добавки применяют для модификации кристаллов жира.

Эфиры полиоксиэтиленсорбитана (Е432—Е436) представляют собой оксиэтилированные сорбитаны — эфиры ангидросорбита с жирными кислотами, в молекулах которых свободные ОН-группы замещены группами О—[СН2—СН2—O]n—H полностью или частично. В добавках для пищевых продуктов п равно 20. Общая формула полиоксиэтиленсорбитанов сорбитановой части молекулы имеет вид:

 

где R', R'', R''' — атомы водорода или ацилы высших жирных кислот.

Коммерческие препараты добавок этой группы имеют название полисорбаты или твины.

В перечень добавок, разрешенных к применению в производстве пищевых продуктов, включены 5 полисорбатов.

Эти неионогенные эмульгаторы получают взаимодействием окиси этилена с эфирами ангидросорбита и жирных кислот в среде 1,4-диоксана. Этоксилирование молекул сорбитанов приводит к повышению гидрофильности ПАВ, которая зависит от числа ацилов высших жирных кислот в структуре сорбитана. ГЛБ для полиоксиэтиленсорбитанмоно-стеарата (полисорбата 60) составляет 14,4, а для тристеарата (полисорбата 65) соответствует 10—11.

Основные области применения — мороженое, сливки для кофе, замороженные десерты, кексы и другие кондитерские изделия.

Эфиры молочной кислоты (лактилаты, Е481 и Е482) — производные молочной кислоты с высшими жирными кислотами (стеариновой или олеиновой) в виде их натриевых или кальциевых солей.

Общая формула, описывающая структуру основного вещества:

 

где R — ацил стеариновой или олеиновой кислоты; Me — Na или 1/2Са.

В основе получения этих добавок лежит взаимодействие карбоксильной группы стеариновой кислоты с гидроксильной группой пищевой молочной кислоты с последующей нейтрализацией гидроксидом натрия или кальция свободных карбоксильных групп в молекулах синтезированных эфиров.

Стеароиллактаты натрия и кальция могут быть отнесены к группе анионактивных ПАВ с отрицательным зарядом на поверхностно-активной части молекулы.

Значение ГЛБ для стеароиллактата натрия составляет 10—12, для кальциевой соли — 5—6. Основные области использования — производство хлеба и хлебобулочных изделий, пудингов, взбитых сливок и других продуктов.

Допустимая суточная доза лактилатов с пищевыми продуктами должна составлять 0—20 мг на кг массы тела.

399:: 400:: 401:: 402:: 403:: 404:: 405:: 406:: 407:: 408:: 409:: 410:: 411:: Содержание

412:: 413:: 414:: Содержание







Дата добавления: 2015-08-12; просмотров: 859. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия