Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение устойчивости систем автоматического регулирования по критерию Михайлова.




 

Критерий позволяет судить об устойчивости САР по очертани­ям так называемой кривой Михайлова, представляющей собой го­дограф вектора M(jw). Для этого необходимо определить характе­ристическое уравнение замкнутой системы и произвести замену s на jw.В результате замены получаем выражение:

Выделим вещественную и мнимую части вектора Михайлова в выра­жении:

 

где

Изменяем частоту w от нуля до бесконечности и строим го­дограф на комплексной плоскости. Кривая Михайлова строится в плоскости (X, jY) по точкам в соответствии с выражением. Каждой точке кривой соответствует свое значение w. Направление возрастания w обычно указывается стрелкой на кривой.

Для устойчивости линейной САР необходимо и достаточно, чтобы вектор M(jw) при изменении w от нуля до бесконечности начинаясь на положительном направлении вещественной оси X повернулся на угол j=pn/2 против часовой стрелки, где n-степень характеристического уравнения замкнутой системы.

Таким образом, для практического применения критерия необ­ходимо найти характеристический полином замкнутой системы M(s), построить по точкам кривую Михайлова M(jw) и подсчитать угол j на который поворачивается этот вектор. Если кривая Михайлова имеет плавные спиралеобразные очертания и проходит последовательно n - квадрантов, где n - порядок дифференциального урав­нения САР, то такая система будет устойчивой.

Рис. 1 Кривые Михайлова для устойчивых САР различного порядка

 

 







Дата добавления: 2015-08-12; просмотров: 161. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (1.631 сек.) русская версия | украинская версия