Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение устойчивости систем автоматического регулирования по критерию Михайлова.





 

Критерий позволяет судить об устойчивости САР по очертани­ям так называемой кривой Михайлова, представляющей собой го­дограф вектора M(jw). Для этого необходимо определить характе­ристическое уравнение замкнутой системы и произвести замену s на jw.В результате замены получаем выражение:

Выделим вещественную и мнимую части вектора Михайлова в выра­жении:

 

где

Изменяем частоту w от нуля до бесконечности и строим го­дограф на комплексной плоскости. Кривая Михайлова строится в плоскости (X, jY) по точкам в соответствии с выражением. Каждой точке кривой соответствует свое значение w. Направление возрастания w обычно указывается стрелкой на кривой.

Для устойчивости линейной САР необходимо и достаточно, чтобы вектор M(jw) при изменении w от нуля до бесконечности начинаясь на положительном направлении вещественной оси X повернулся на угол j=pn/2 против часовой стрелки, где n-степень характеристического уравнения замкнутой системы.

Таким образом, для практического применения критерия необ­ходимо найти характеристический полином замкнутой системы M(s), построить по точкам кривую Михайлова M(jw) и подсчитать угол j на который поворачивается этот вектор. Если кривая Михайлова имеет плавные спиралеобразные очертания и проходит последовательно n - квадрантов, где n - порядок дифференциального урав­нения САР, то такая система будет устойчивой.

Рис. 1 Кривые Михайлова для устойчивых САР различного порядка

 

 







Дата добавления: 2015-08-12; просмотров: 606. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия