Студопедия — Дифракция света
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифракция света






7.1. Точечный источник света (λ = 0,5 мкм) расположен на расстоянии а = 1 м перед диафрагмой с круглым отверстием диаметра d = 2 мм. Определить расстояние b от диафрагмы до точки наблюдения, если отверстие открывает три зоны Френеля. Ответ: 2 м.

7.2. Определить радиус третьей зоны Френеля, если расстояния от точечного источника света (λ = 0,6 мкм) до волновой поверхно­сти и от волновой поверхности до точки наблюдения равны 1,5 м. Ответ: 1,16 мм.

7.3. На диафрагму с круглым отверстием диаметром d = 5 мм падает нормально параллельный пучок света с длиной волны λ = 0,6 мкм. Определить расстояние от точки наблюдения до отверстия, если отверстие открывает: 1) две зоны Френеля; 2) три зоны Фре­неля. Ответ: 1) 5,21 м; 2) 3,47 м.

7.4. Определить радиус третьей зоны Френеля для случая плоской волны. Расстояние от волновой поверхности до точки наблюде­ния равно 1,5 м. Длина волны λ = 0,6 мкм. Ответ: 1,64 мм.

7.5. Определить радиус четвертой зоны Френеля, если радиус вто­рой зоны Френеля для плоского волнового фронта равен 2 мм. Ответ: 2,83 мм.

7.6. Определить радиус первой зоны Френеля, если расстояния от точечного источника света (λ = 0,5 мкм) до зонной пластинки и от пластинки до места наблюдения а = b = 1 м. Ответ: 0,5 мм.

7.7. На зонную пластинку падает плоская монохроматическая волна (λ = 0,5 мкм). Определить радиус первой зоны Френеля, если расстояние от зонной пластинки до места наблюдения b = 1 м. Ответ: 707 мкм.

7.8. Зонная пластинка дает изображение источника, удаленного от нее на 2 м, на расстоянии 1 м от своей поверхности. Где полу­чится изображение источника, если его удалить в бесконечность? Ответ: 66,7 см.

7.9. Дифракция наблюдается на расстоянии 1 м от точечного источника монохроматического света (λ = 0,5 мкм). Посередине между источником света и экраном находится диафрагма с круглым отверстием. Определить радиус отверстия, при котором центр дифракционных колец на экране является наиболее темным. Ответ: 0,5 мм.

7.10. Сферическая волна, распространяющаяся из точечного монохроматического источника света (λ = 0,6 мкм), встречает на своем пути экран с круглым отверстием радиусом r = 0,4 мм. Расстояние b от источника до экрана равно 1 м. Определить расстояние от отверстия до точки экрана, лежащей на линии, соединяющей источник с центром отверстия, где наблюдается максимум освещенности. Ответ: 36,3 см.

7.11. На экран с круглым отверстием радиусом r = 1,5 мм нормально падает параллельный пучок монохроматического света с длиной волны λ = 0,5 мкм. Точка наблюдения находится на оси отверстия на расстоянии b = 1,5 м от него. Определить: 1) число зон Френеля, укладывающихся в отверстии; 2) темное или светлое кольцо наблюдается в центре дифракционной картины, если в месте наблюдения помещен экран. Ответ: 1) 3; 2) светлое.

7.12. На экран с круглым отверстием радиусом r = 1,2 мм нормально падает параллельный пучок монохроматического света с длиной волны λ = 0,6 мкм. Определить максимальное расстояние от отверстия на его оси, где еще можно наблюдать наиболее темное пятно. Ответ: 1,2 м.

7.13. Показать, что за круглым экраном С в точке В, лежащей на ли­нии, соединяющей точечный источник с центром экрана, будет наблюдаться светлое пятно. Размеры экрана принять достаточно малыми.

7.14. На узкую щель шириной b = 0,05 мм падает нормально монохроматический свет с длиной волны λ = 694 нм. Определить направление света на вторую светлую дифракционную полосу (по отношению к первоначальному направлению света). Ответ: 2°.

7.15. На узкую щель падает нормально монохроматический свет. Его направление на четвертую темную дифракционную полосу составляет 2°12'. Определить, сколько длин волн укладывается на ширине щели. Ответ: 104.

7.16. На щель шириной а = 0,1 мм падает нормально монохроматический свет (λ = 0,6 мкм). Экран, на котором наблюдается дифракционная картина, расположен параллельно щели на расстоянии l = 1 м. Определить расстояние Δxмежду первыми дифракционными минимумами, расположенными по обе стороны центрального фраунгоферова максимума Ответ: 1,2 см.

7.17. На щель шириной а = 0,1 мм падает нормально монохроматический свет с длиной волны λ = 0,5 мкм. Дифракционная картина наблюдается на экране, расположенном параллельно щели. Определить расстояние l от щели до экрана, если ширина центрального дифракционного максимума Δx = 1 см. Ответ: 1 м.

7.18. Монохроматический свет с длиной волны λ = 0,6 мкм падает на длинную прямоугольную щель шириной а = 12 мкм под углом Θ = 45° к ее нормали. Определить угловое положение первых минимумов, расположенных по обе стороны центрального фраунгоферова максимума. Ответ: 49°12', 41°6'.

7.19. Монохроматический свет падает на длинную прямоугольную щель шириной а = 12 мкм под углом α = 30° к ее нормали. Опре­делить длину волны λ света, если направление на первый мини­мум (k = 1) от центрального фраунгоферова максимума состав­ляет 33°. Ответ: 536 нм.

7.20. На дифракционную решетку нормально падает монохроматиче­ский свет с длиной волны λ = 600 нм. Определить наибольший порядок спектра, полученный с помощью этой решетки, если ее постоянная d = 2 мкм. Ответ: 3.

7.21. На дифракционную решетку длиной l = 1,5 мм, содержащей N = 3000 штрихов, падает нормально монохроматический свет с дли­ной волны λ = 550 нм. Определить: 1) число максимумов, наблю­даемых в спектре дифракционной решетки; 2) угол, соответст­вующий последнему максимуму. Ответ: 1) 18; 2) 81°54'.

7.22. Определить число штрихов на 1 мм дифракционной решетки, если углу φ= 30° соответствует максимум четвертого порядка для монохроматического света с длиной волны λ= 0,5 мкм. Ответ: 250 мм-1.

7.23. На дифракционную решетку нормально падает монохроматический свет с длиной волны λ = 0,5 мкм. На экран, находящийся от решетки на расстоянии L = 1 м, с помощью линзы, расположенной вблизи решетки, проецируется дифракционная картина, причем первый главный максимум наблюдается на расстоянии l = 15 см от центрального. Определить число штрихов на 1 см дифракционной решетки. Ответ: 3.103 см-1.

7.24. Монохроматический свет нормально падает на дифракционную решетку. Определить угол дифракции, соответствующий максимуму четвертого порядка, если максимум третьего порядка отклонен на φ = 18°. Ответ: 24°20'.

7.25. На дифракционную решетку нормально падает монохроматический свет. Определить угол дифракции для линии 0,55 мкм в четвертом порядке, если этот угол для линии 0,6 мкм в третьем порядке составляет 30°. Ответ: 37°42'.

7.26. На дифракционную решетку нормально падает монохроматический свет. В спектре, полученном с помощью этой дифракционной решетки, некоторая спектральная линия наблюдается в первом порядке под углом φ = 11°. Определить наивысший порядок спектра, в котором может наблюдаться эта линия. Ответ: 5.

7.27. Определить длину волны монохроматического света, падаю­щего нормально на дифракционную решетку, имеющую 300 штрихов на 1 мм, если угол между направлениями на максимумы первого и второго порядков составляет 12°. Ответ: 644 нм.

7.28. Определить толщину плоскопараллельной стеклянной пла­стинки (п = 1,55), при которой в отраженном свете максимум второго порядка для λ = 0,65 мкм наблюдается под тем же углом, что и у дифракционной решетки с постоянной d = 1 мкм. Ответ: 577 нм.

7.29. На дифракционную решетку с постоянной d = 5 мкм под углом Θ = 30° падает монохроматический свет с длиной волны λ = 0,5 мкм. Определить угол φ дифракции для главного макси­мума третьего порядка. Ответ: 53°8'.

7.30. На дифракционную решетку под углом Θ падает монохроматический свет с длиной волны λ. Найти условие, определяющее направления на главные максимумы, при условии, что d >> m λ (m – порядок спектра).

Ответ: d. cosΘ.(φ - Θ) ≈ m λ.

7.31. Узкий параллельный пучок рентгеновского излучения с длиной волны λ = 245 нм падает на естественную грань монокристалла каменной соли. Определить расстояние d между атомными плоскостями монокристалла, если дифракционный максимум второго порядка наблюдается при падении излучения к поверхности мо­нокристалла под углом скольжения Θ = 61°. Ответ: 0,28 нм.

7.32. Узкий параллельный пучок монохроматического рентгеновского излучения падает на грань кристалла с расстоянием d между его атомными плоскостями 0,3 нм. Определить длину волны рентгеновского излучения, если под углом Θ = 30° к плоскости грани наблюдается дифракционный максимум первого порядка. Ответ: 300 нм.

7.33. На дифракционную решетку нормально падает монохроматический свет с длиной волны λ = 0,6 мкм. Угол дифракции для пятого максимума равен 30°, а минимальная разрешаемая решеткой разность длин волн составляет Δλ = 0,2 нм. Определить: 1) постоянную дифракционной решетки; 2) длину дифракционной решетки. Ответ: 1) 6 мкм; 2) 3,6 мм.

7.34. Сравнить наибольшую разрешающую способность для красной линии кадмия (λ= 644 нм) двух дифракционных решеток одинаковой длины (l = 5 мм), но разных периодов (d1 = 4 мкм, d2 = 8 мкм). Ответ: R 1max = R 2max = 7500.

7.35. Показать, что для данной λ максимальная разрешающая способность дифракционных решеток, имеющих разные периоды, но одинаковую длину, имеет одно и то же значение. Ответ: Rmax = 1/λ.

7.36. Определить постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (λ1 = 578 нм и λ2 = 580 нм). Длина решетки l = 1 см. Ответ: 34,6 мкм.

7.37. Постоянная d дифракционной решетки длиной l = 2,5 см равна 5 мкм. Определить разность длин волн, разрешаемую этой решеткой, для света с длиной волны λ = 0,5 мкм в спектре второго порядка. Ответ: 50 пм.

7.38. Дифракционная решетка имеет N = 1000 штрихов и постоянную d = 10 мкм. Определить: 1) угловую дисперсию для угла дифракции φ = 30° в спектре третьего порядка; 2) разрешающую способность дифракционной решетки в спектре пятого порядка. Ответ: 1) 3,46.105 рад/м; 2) 5000.

7.39. Определить длину волны, для которой дифракционная решетка с постоянной d = 3 мкм в спектре второго порядка имеет угловую дисперсию D = 7.105 рад/м. Ответ: 457 нм.

7.40. Угловая дисперсия дифракционной решетки для λ = 500 нм в спектре второго порядка равна 4,08.105 рад/м. Определить постоянную дифракционной решетки. Ответ: 5 мкм.

 







Дата добавления: 2015-08-12; просмотров: 3230. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия