Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. Случайной называется величина, изменяющаяся от опыта к опыту нерегулярно и, на первый взгляд, беспорядочно





Случайной называется величина, изменяющаяся от опыта к опыту нерегулярно и, на первый взгляд, беспорядочно. Результат каждого отдельного измерения случайной величины практически непредсказуем. Однако совокупности результатов измерений подчиняются статистическим закономерностям, изучение которых служит одной из основ теории и практики физического и инженерного эксперимента. Существует множество законов распределения случайных величин. Одним из наиболее распространенных является нормальный закон распределения, описываемый функцией Гаусса:

 

, (1)

 

где ρ(t) – плотность нормального распределения случайной величины t, σ – среднеквадратичная ошибка или стандарт.

Закономерность распределения значений изучаемой случайной величины t становится наглядной, если построить гистограмму - ступенчатую диаграмму, показывающую, как часто при измерениях появляются значения, попадающие в тот или иной из равных интервалов D t, лежащих между наименьшим и наибольшим из наблюдаемых значений величины t.

Гистограмму строят в следующих координатах (рис 1): ось абсцисс – измеряемая величина t; ось ординат – Δ N / N Δ t. Здесь N - полное число измерений, Δ N - число результатов, попавших в интервал [ t, t + Δ t ]. Частное Δ N / N - есть доля результатов, попавших в указанный интервал, и характеризует вероятность попадания в него результата отдельного измерения. Отношение этой величины к ширине интервала Δ N / N Δ t называется "плотностью вероятности".

При очень большом числе измерений () вместо ступенчатой гистограммы получается плавная кривая зависимости

 

. (2)

 

Эту функцию называют плотностью вероятности или законом распределения по t. Чтобы сравнить наблюдаемое распределение с нормальным распределением (1), нужно найти по данным измерений параметры <t>; и σ функции Гаусса (приближенно, поскольку число измерений ограничено). Параметр <t>; есть среднее арифметическое случайной величины

 

. (3)

 

Параметр σ является средним квадратичным отклонением наблюдений от среднего <t>;:

 

. (4)

 

Из анализа формулы (1) следует, что плотность нормального распределения имеет максимум

 

, (5)

 

при значении t = <t>; и симметрична относительно < t>;. Нетрудно сравнить “наибольшую высоту гистограммы” и максимальное значение функции Гаусса (5).

Для количественной проверки того, насколько хорошо полученные результаты соответствуют нормальному распределению, можно воспользоваться соотношением (6)

 

, (6)

 

в котором вероятность Р 12 попадания результата измерения в интервал (t 1, t 2) c одной стороны может быть вычислена как интеграл функции Гаусса в этих пределах, а с другой стороны - найдена как относительное число наблюдений N 12, результаты которых попали в этот интервал. При сравнении наблюдаемого распределения с нормальным (1) можно воспользоваться известными значениями вероятности распределения случайной величины для наиболее употребительных в технике измерений пределов:

 

t (<t>; -s; <t>;+s), P s = 0,68;

 

t (<t>; -2s; <t>;+2s), P 2s = 0,95;

 

t (<t>; -3s; <t>;+3s), P 3s = 0,997.

 







Дата добавления: 2015-08-12; просмотров: 422. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия