Краткие теоретические сведения. Свободные поверхности жидкостей находятся в особом состоянии натяжения
Свободные поверхности жидкостей находятся в особом состоянии натяжения. Силы поверхностного натяжения направлены по касательной к поверхности жидкости и действуют нормально к любой линии, мысленно проведенной на этой поверхности. Для количественной характеристики силы поверхностного натяжения вводят коэффициент поверхностного натяжения - s, который равен силе, отнесенной к единице длины:
Наличие сил поверхностного натяжения можно понять из следующих рассуждений. Поверхность жидкости, соприкасающаяся с ее паром или другой средой (воздухом), находится в особых условиях, т.к. молекулы поверхностного слоя взаимодействуют с молекулами двух сред, имеющих различную плотность. Последнее обстоятельство обусловливает равнодействующую сил:
действующих на молекулу в поверхностном слое, направленную внутрь жидкости (рис.1). Таким образом, у поверхности жидкости будут действовать силы, образующие “поверхностное” силовое поле, расположенное в тонком слое порядка нескольких межмолекулярных расстояний в жидкостях. Молекулы, находящиеся в этом поле, обладают повышенной потенциальной энергией. Следовательно, при выходе молекул из глубины жидкости на поверхность их потенциальная энергия возрастает. Изменения энергии происходит в поверхностном слое (пленке) толщиной 10-7 cм. При изменении формы поверхности жидкости или изменении ее площади часть молекул с повышенной энергией уходят внутрь жидкости, освобождающаяся при этом энергия расходуется на увеличение теплового движения молекул.
Кроме силового смысла, который определяется из выражения (1), коэффициент поверхностного натяжения имеет и энергетический смысл. Для понятия этого смысла рассмотрим случай, когда жидкость существует в форме тонкой пленки, примером которой может служить мыльная пленка. Возьмем проволочный каркас, имеющий форму прямоугольника, рис.2.
A=2FDx. (2)
Площадь поверхности пленки увеличится на
Из выражения (3) следует, что коэффициент поверхностного натяжения равен работе, затраченной на увеличение поверхности пленки на единицу площади. В этом заключается энергетический смысл s. Вследствие действия сил поверхностного натяжения искривленный поверхностный слой производит на жидкость давление DP, дополнительное к внешнему давлению и обусловленное кривизной поверхности. Определим величину дополнительного давления для случая, когда поверхность жидкости представляет собой часть сферы радиусом R. Отсечем мысленно малый сферический сегмент DS, рис.3. Силы поверхностного натяжения, приложенные к контуру этого сег
DFi=sD
Разложим силу Величина равнодействующей силы будет равна алгебраической сумме сил
Заменив в последнем выражении DFi соотношением (4) и cosj отношением r к R, получим:
так как Давление DP получим, поделив значение силы F на площадь, ограниченную контуром, т.е.:
Формула (5) дает величину добавочного давления, оказываемого на жидкость со стороны сферической поверхности, и всегда направленного к центру кривизны поверхности.
В случае вогнутой поверхности давление отрицательно, так как направлено не внутрь жидкости, а наружу, и давление на жидкость будет меньше внешнего. В данной работе формула (5) использована для определения s.
|