Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Трубчатые теплообменники





Кожухотрубчатые теплообменники. Эти теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменников. На рис. VШ-11 а показан кожухотрубчатый теплообменник жесткой конструкции, который состоит из корпуса, или кожуха 1, и приваренных к нему трубных решеток 2. В трубных решетках закреплен пучок труб 3. К трубным решеткам крепятся (на прокладках и болтах) крышки 4.

В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред I движется внутри труб (в трубном пространстве), а другая II — в межтрубном пространстве.

Рис. VIII-11. Кожухотрубчатые одноходовой (а) и многоходовой (б) теплообменники: 1 — корпус (обечайка); 2 —трубные решетки. 3 — тоубы; 4— крышки, 5 — перегородки в крышках; 6 — перегородки в межтрубном пространстве.

Среды обычно направляют противотоком друг к другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, — в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или ох­лаждении.

Кроме того, при указанных на­правлениях движения сред достигается более равномерное распределе­ние скоростей и идентичные условия теплообмена по площади поперечно­го сечения аппарата. В противном случае, например при подаче более холодной (нагреваемой) среды свер­ху теплообменника, более нагретая часть жидкости, как более легкая, может скапливаться в верхней ча­сти аппарата, образуя «застойные» зоны.

Трубы в решетках обычно равномер­но размешают по периметрам правильных шестиугольников, т. е. по вершинам рав­носторонних треугольников (рис VIII-12,а), реже применяют размещение труб по кон­центрическим окружностям (рис VIII-12,б).

В отдельных случаях, когда необходимо обеспечить удобную очистку наружной по­верхности труб, их размещают по периметрам прямоугольников (рис. VIII -12, в). Все указанные способы размещения труб преследуют одну цель — обеспечить воз­можно более компактное размещение необходимой поверхности теплообмена внутри аппарата. В большинстве случаев наибольшая компактность достигается при разме­щении трубок по периметрам правильных шестиугольников.

Рис. VIII -12. Способы размещения труб в теплообменниках:

а — по периметрам правильных шестиугольников; б — по концентрическим окружностям;

в — по периметрам прямоугольников (коридорное распо­ложение)

 

  Рис. УП1-13. Закрепление труб в труб­ных решетках: а — развальцовкой; б — развальцовкой с ка­навками; в — сваркой; г — пайкой; д — саль­никовыми устройствами.

Трубы закрепляют в решетках чаще всего развальцовкой (рис. VIII -13, а, б), причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее раз­вальцовки (рис. VIII -13, б). Кроме того, используют закрепление труб сваркой (рис. VIII -13, в), если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой (рис. VIII -13, г), применяемой для соединения главным образом медных и латунных труб. Изредка используют соеди­нение труб с решеткой посредством сальников (рис. VIII -13, д), допускающих свобод­ное продольное перемещение труб и возможность их быстрой замены. Такое соедине­ние позволяет значительно уменьшить температурную деформацию труб (см. ниже), но является сложным, дорогим и недостаточно надежным.

Теплообменник, изображенный на рис. VIII-11, а, является одноходовым. При сравнительно небольших расходах жидкости скорость ее движения в трубах таких теплообменников низка и, следовательно, коэф­фициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты неудобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообмене (кожух аппарата). Поэтому более рационально увеличивать скорость теплообмена путем применения многоходо­вых теплообменников.

В многоходовом теплообменнике (рис. VIII-11, б)корпус 1, трубные решетки 2, укрепленные в них трубы 3 и крышки 4 идентичны изображенным на рис. VIII-11, а. С помощью поперечных перегородок 5, установленных в крышках теплооб­менника, трубы разделены на сек­ции, или ходы, по которым последо­вательно движется жидкость, про­текающая в трубном пространстве теплообменника. Обычно разбивку на ходы производят таким образом, чтобы во всех секциях находилось примерно одинаковое число труб.

Вследствие меньшей площади сум­марного поперечного сечения труб, размещенных в одной секции, по сравнению с поперечным сечением всего пучка труб, скорость жид­кости в трубном пространстве много­ходового теплообменника возраста­ет (по отношению к скорости в одноходовом теплообменнике) в чис­ло раз, равное числу ходов. Так, в четырехходовом теплообменнике (рис. VIII-11, б) скорость в трубах при прочих равных условиях в че­тыре раза больше, чем в однохо­довом. Для увеличения скорости и удлинения пути движения среды в межтрубном пространстве (рис. VIII-11, б) служат сегментные перегородки 6. В горизонтальных теплообменниках эти перегородки являются одновременно промежуточ­ными опорами для пучка труб.

Повышение интенсивности теплообмена в многоходовых теплообменни­ках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономи­чески целесообразной скорости, определяемой числом ходов теплообмен­ника, которое обычно не превышает 5—6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по срав­нению с чисто противоточным движением участвующих в теплообмене сред. В одноходовых и особенно в многоходовых теплообменниках теплообмен может ухудшаться вследствие выделения растворенных в жидкости (или паре) воздуха и других неконденсирующихся газов. Для их периодиче­ского удаления в верхней части кожуха теплообменников устанавливают продувочные краники.

Одноходовые и многоходовые теплообменники могут быть вертикаль­ными или горизонтальными. Вертикальные теплообменники более просты в эксплуатации и занимают меньшую производственную площадь. Гори­зонтальные теплообменники изготавливаются обычно многоходовыми и работают при больших скоростях участвующих в теплообмене сред для того, чтобы свести к минимуму расслоение жидкостей вследствие разности их температур и плотностей, а также устранить образование застойных зон.

Если средняя разность температур труб и кожуха в теплообменниках жесткой конструкции, т. е. с неподвижными, приваренными к корпусу трубными решетками, становятся значительными (приблизительно равной или большей 50 °С), то трубы и кожух удлиняются неодинаково. Это вызывает значительные напряжения в трубных

Рис. VIII-14. Кожухотрубчатые теплообменники с компенсирующими

устройствами:

а — с линзовым компенсатором; б — с плавающей головкой; в — с U-образными трубами;

1 — компенсатор; 2 — подвижная трубная решетка; 3 — U-образные трубы.

решетках, может нарушить плотность соединения труб с решетками, привести к разрушению свар­ных швов, недопустимому смешению обменивающихся теплом сред. По­этому при разностях температур труб и кожуха, больших 50°С, или при значительной длине труб применяют кожухотрубчатые теплообменники нежесткой конструкции, допускающей некоторое перемещение труб от­носительно кожуха аппарата.

Для уменьшения температурных деформаций, обусловленных большой разностью температур труб и кожуха, значительной длиной труб, а так­же различием материала труб и кожуха, используют кожухотрубчатые теплообменники с ллл з овы м- компенсатором (рис. VIII-14, а), у которых на корпусе имеется линзовый компенсатор 1, подвергающийся упругой деформации. Такая конструкция отличается простотой, но при­менима при небольших избыточных давлениях в межтрубном пространстве, обычно не превышающих 6·106 Н/м2 (6 ат).

При необходимости обеспечения больших перемещений труб и кожуха используют теплообменник с плавающей головкой (рис. VIII-14, б). Нижняя трубная решетка 2 является подвижной, что позволяет всему пучку труб свободно перемещаться независимо от кор­пуса аппарата. Этим предотвращаются опасная температурная деформа­ция труб и нарушение плотности их соединения с трубными решетками. Однако компенсация температурных удлинений достигается в данном случае за счет усложнения и утяжеления конструкции теплообменника.

В кожухотрубчатом теплообменнике с U-образными трубами (рис. VIII-14, в) сами трубы 3 выполняют функцию компенсирующих устройств. При этом упрощается и облегчается конструкция аппарата, имеющего лишь одну неподвижную трубную решетку. Наружная поверх­ность труб может быть легко очищена при выемке всей трубчатки из кор­пуса аппарата. Кроме того, в теплообменниках такой конструкции, яв­ляющихся двух- или многоходовыми, достигается довольно интенсивный теплообмен. Недостатки теплообменников с U-образными трубами: труд­ность очистки внутренней поверхности труб, сложность размещения большого числа труб в трубной решетке.

Стальные кожухотрубчатые теплообменники стандартизованы по ГОСТ 9929—67.

Рис. VIII-15. Кожухотрубчатый теп­лообменник с двойными трубами: 1, 3 — трубная решетка; 2 внутренние трубы: 4 — наружные трубы

В химической промышленности применяются также теплообменники с двойными трубами (рис. VIII-15). С одной стороны аппарата размещены две трубные решетки, причем в решетке 1 закреплен пу­чок труб 2 меньшего диаметра, от­крытых с обоих концов, а в решет­ке 3 — трубы 4 большего диаметра с закрытыми левыми концами, уста­новленные концентрически относи­тельно труб 2. Среда I движется по кольцевым пространствам между тру­бами 2 и 4 и выводится из межтруб­ного, пространства теплообменника по трубам 2. Другая среда II дви­жется сверху вниз по межтрубно­му пространству корпуса тепло­обменника, омывая трубы 4 снаружи. В теплообменниках такой кон­струкции трубы могут удлиняться под действием температуры независи­мо от корпуса теплообменника.

Элементные теплообменники. Для повышения скорости движения среды в межтрубном пространстве без применения перегородок, затруд­няющих очистку аппарата, используют элементные теплооб­менники. Каждый элемент такого теплообменника представляет со­бой простейший кожухотрубчатый теплообменник. Нагреваемая и охлаж­даемая среды последовательно проходят через отдельные элементы, со­стоящие из пучка труб в кожухе небольшого диаметра. Теплообменник, состоящий из таких элементов (ходов), допускает значительные избыточ­ные давления в межтрубном пространстве; его можно рассматривать как модификацию многоходового кожухотрубчатого теплообменника.

В элементных теплообменниках взаимное движение сред приближается к эффективной схеме чистого противотока. Однако вследствие разделения общей поверхности теплообмена на отдельные элементы конструкция ста­новится более громоздкой и стоимость теплообменника возрастает.

Двухтрубчатые теплообменники. Теплообменники этой конструкции,, называемые также теплообменниками типа «труба в трубе», состоят из нескольких последовательно соединенных трубчатых элементов, образо­ванных двумя концентрически расположенными трубами (рис. VIII-16). Один теплоноситель движется по внутренним трубам 1, а другой — по кольцевому зазору между внутренними 1 и наружными 2 трубами. Вну­тренние трубы (обычно диаметром 57—108 мм) соединяются калачами 3, а наружные трубы, имеющие диаметр 76—159 мм,—патрубками 4.

Рис. VIII-16. Двухтрубчатый теплообменник: 1 — внутренние трубы;

2 — наружные трубы; 3 — калач; 4 — патрубок.

Благодаря небольшим поперечным сечениям трубного и межтрубного пространства в двухтрубчатых теплообменниках даже при небольших расходах достигаются довольно высокие скорости жидкости, равные обычно 1—1,5 м/сек. Это позволяет получать более высокие коэффициенты тепло­передачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Кроме того, с уве­личением скоростей теплоносителей уменьшается возможность отложения загрязнений на поверхности теплообмена.

Вместе с тем эти теплообменники более громоздки, чем кожухотрубчатые, и требуют большего расхода металла на единицу поверхности тепло­обмена, которая в аппаратах такого типа образуется только внутренними трубами.

Двухтрубчатые теплообменники могут эффективно работать при не­больших расходах теплоносителей, а также при высоких давлениях.

Если требуется большая поверхность теплообмена, то эти аппараты выполняют из нескольких параллельных секций.







Дата добавления: 2015-09-04; просмотров: 2361. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия