Векторное пространство
Наиболее важным математическим пространством является векторное (линейное) пространство. Векторное пространство содержит две различные сущности — векторы и скаляры. В этом пространстве существуют правила объединения скаляров с помощью двух операций (сложения и перемножения), и, таким образом, определено скалярное поле. Помимо скаляров векторное пространство содержит элементы другого типа — векторы. Над векторами определены две операции: сложение вектора с вектором и умножение вектора на скаляр. Примерами векторных пространств являются пространство геометрических векторов (направленных отрезков прямой) и пространство алгебраических векторов как совокупностей n действительных чисел. В векторном пространстве можно комбинировать скаляры и векторы и создавать новые векторы с помощью операции умножения скаляра на вектор. Можно также комбинировать и векторы с помощью операции сложения векторов. Примерами математических векторных пространств являются n-группы действительных чисел, решение однородных линейных дифференциальных уравнений и геометрические операции над направленными линейными отрезками. Строго говоря, в векторном пространстве отсутствуют такие понятия, как положение и расстояние. Как, например, определить расстояние между двумя дифференциальными уравнениями? Но такой вопрос и в голову никому не придет. Если в качестве векторного пространства для решения геометрических задач использовать пространство отрезков прямых, то возникнет множество сложностей, поскольку векторы в нем являются свободными, т.е. как и физические векторные величины, имеют модуль (длину) и направление, но не имеют точки приложения. Все дело в том, что в векторном пространстве отсутствуют точки, как атрибуты пространства, как его элементы. Векторы, показанные на рис.2, являются в векторном пространстве идентичными объектами. Система базисных векторов, которая позволяет представить любой вектор в данном пространстве в виде набора коэффициентов разложения по этому базису, образует систему координат пространства. Но в векторном пространстве отсутствует возможность определить эту особую точку, к которой должны быть "привязаны" базисные векторы.
|