Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Multiple Regression Analysis. Derivation of the Multiple Regression Coefficients.





Derivation of OLS estimators

As in the simple regression case, we choose the values of the regression coefficient to make the fit as goog as possible in the hope that we will obtaine the most satisfactory estimates of the unknown true parameters. Our definition of goodness of fit is the minimization of RSS, the sum of squares of the residuals: RSS= , where ei is the residual in observation I, the difference between the actual value Yi in that observation and the value predicted by the regression equation:

= b1 + b2X2i + b3X3i +........ + bkXki;

where b1, b2.... bk are estimates of the true regression coefficients b1, b2,.......bk, given a sample of n observations on Y and all the X’s; defines the predicted or estimated value of Yi given the values X2i, X3i,.......Xki, and

ei = Yi - = Yi - b1 - b2X2i - b3X3i -........ - bkXki are the residuals from the estimated regression. Note that the X variables now have two subscripts. The first identifies the X and the second identifies the observations.

 

The OLS estimators are obtained by minimising the residual sum of squares (RSS):

RSS = =

The k first order conditions for this problem are known as the normal equations for the regression coefficients:

 

RSSb1 = = 0 (1)

RSSb2 = = 0 (2)

RSSb3 = = 0 (3)

M M

RSSbk = = 0 (k)

We can derive the OLS estimator for b1 from (1) as:

b1 =

where b1 is the predicted value of Y when the values of all the explanatory variables are set equal to zero.

We can the proceed to derive estimators for the k -1 unknown slope coefficients b2, b3,...bk from the remaining k -1 simultaneous equations. These estimators are complicated expressions in which each bj depends in general on the sample values of the dependent variable and all of the explanatory variables.

Slope estimators when k -1 = 2

You well never need to know the formulae for the slope estimators for use in practical work since the computer will perform all the necessary calculations. Nevertheless some insights into the general nature of the slope estimators in multiple regression can be obtained by examining the estimators for the particular case where there are two explanatory variables (i.e. k -1 =2).

Thus when k -1 =2 we obtain: and a parallel expression for b3 can be obtained by exchanging X2 and X3.

The estimator b2 depends not only on the observed values of X2 and Y but also on those of X3. Thus the slope coefficient on X2 will not generally be the same as that obtained from a simple regression of Y on a constant and X2. Moreover we can not generally obtain the full set of regression coefficients by performing two simple regressions, one of Y on a constant and X2 and the other of Y on a constant and X3, and somehow combining the results.

First, the principles behind the derivation of the regression coefficient are the same for multiple regression as for simple regression. Second, the expression, however, are different and so you should not try to use expressions derived for simple regression in a multiple regression context.

33.Properties of the Multiple Regression Coefficients: unbiasedness, efficiency, precision, consistency.

PROPERTIES OF THE OLS REGRESSION COEFFICIENTS

MODEL SPECIFICATION

Define the true regression model as:

yi = b + Xi + ui

Where yiis composed of (i) a systematic portion b + Xi whose specification is guided by economic theory and (ii) a random component given by the disturbance term ui

Given the Gauss-Markov condition E{ ui } = 0 then E{ yi } = b + Xi

Define the estimated regression line as:

= b + bXi

where b and b are the OLS estimates of the true regression coefficients and given a sample of n observations on X and Y:

 

b= b =

b

Linearity of the OLS estimators.

We can note that both b and b are linear estimators since they can be written as linear functions of the Yi ’s (i.e. in the form S wiYi where the weights, wi, depend on the (fixed) values taken by the explanatory variable)

EXPECTED VALUES OF THE OLS ESTIMATORS

Each regression coefficient can be decomposed or broken down into (i) a fixed component equal to the value of the true regression parameter (ii) a random component dependent on u which is responsible for its variations around the central tendency:

b ; b

We can then show that:

E{b} =  if Gauss-Markov conditions 1 and 4 hold

E{b} =  if Gauss-Markov condition 4 holds

Unbiasedness of the OLS estimators.

An estimator is said to be unbiased if the expected value of the estimator is equal to the population characteristic. Sample estimates derived from an unbiased estimator will be accurate on average, though individual estimates (obtained from particular samples) will only equal the true value by coincidence.

precision of the ols estimators

The population variances of the OLS estimators are:

pop.var{b} ; pop.var{b} ;

where = E[ is the population variance of the disturbance term. Both pop.var{b} and pop.var{b} are (i) directly proportional to and (ii) inversely proportional to n and Var (X)

The population variance of the disturbance term will in general be unknown. An unbiased estimator of is given by:

where ei= Yi (b + bXi) are the residuals from the estimated regression, and nk is the number of degrees of freedom (n is the sample size and k is the number of coefficients in the regression (which is equal to 2 in the simple bivariate model)). The square root of this estimator su is known as the (sample) Standard Error of the Regression (S.E.R) and provides an estimator of the typical size of the disturbance term in the regression model.

Estimators for the standard errors of b and b are therefore given as:

s.e.{b}

s.e.{b} ;

The standard error of a regression coefficient is a measure of the typical deviation of a sample estimate of the coefficient from the true parameter value (i.e. of the typical size of the estimation error).

Efficiency of the OLS estimators.

One unbiased estimator is said to be more efficient than another if it has the smaller variance of the two estimators. The more efficient an estimator is the more likely it is that an estimate obtained using the estimator from a particular sample will be close to the value of the population characteristic. The minimum variance unbiased estimator has the smallest variance of any possible unbiased estimator (of its type).

Consistency of the OLS estimators

An estimator is said to be consistent if the probability limit (plim) of the estimator is equal to the true value of the population characteristic. A consistent estimator is bound to give an accurate estimate if the sample size is large enough, regardless of the actual observations in the sample.







Дата добавления: 2015-09-04; просмотров: 691. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия