Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы определения координат центра тяжести





Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

 

1 Аналитический (путем интегрирования).

 

2 Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

 

3 Экспериментальный (метод подвешивания тела).

 

4 Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S1 и S2 (S = S1 + S2). Центры тяжести этих фигур находятся в точках C1(x1, y1) и C2(x2, y2). Тогда координаты центра тяжести тела равны

 

 

21. Моменты инерции и радиусы инерции плоской фигуры.

 

Осевой момент инерции фигуры - этоинтеграл произведений элементарных площадей на квадраты их расстояний до рассматриваемой оси. Формулы осевого момента инерции произвольной фигуры (см. рис. 4.1) относительно осей x и y:

Полярный момент инерции фигуры относительно данной точки (полюса) - это интеграл произведений элементарных площадей на квадраты их расстояний до полюса:

Центробежный момент инерции фигуры - этоинтеграл произведений элементарных площадей на их расстояния до осей x и y:

Моменты инерции измеряются в единицах длины в четвертой степени (как правило, см4).

Осевые и центробежный моменты инерции относительно осей, проходящих через центр тяжести поперечного сечения стержня, называют собственнымимоментами инерции.

 

Момент инерции фигуры относительно координатной оси может быть представлен в виде произведения площади фигуры на квадрат радиуса инерции:

Формула радиуса инерции имеет вид:

Главным центральным осям инерции соответствуют главные радиусы инерции:

Для прямоугольника (см. рис. 4.4, а) главные радиусы инерции равны:

Для круглого сечения формула главных радиусов инерции имеет вид:

 

 

23. Главные и центральные оси инерции. Определение угла наклона главных центральных осей.

 

Можно найти положение двух взаимно перпендикулярных осей, при котором . Такие оси называются главными осями. Главные оси для квадрата изображены на (рис. 4.2, в).

Если фигура имеет ось симметрии, то эта ось является одной из главных осей (другая ей перпендикулярна).

Главные оси, проходящие через центр тяжести поперечного сечения стержня, называются главными центральными осями.

 

24. Виды расчетов на прочность.







Дата добавления: 2015-09-04; просмотров: 973. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия