Хромосомный механизм определения пола
Согласно хромосомной теории К.Корренса (1907), пол будущего потомка определяется сочетанием половых хромосом в момент определения. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным, так как он дает один тип гамет, а имеющий разные- гетерогаметным, так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный - мужской. У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции, так как мужской пол - гетерогаметный: Х-сперматозоиды и Y-сперматозоиды. Поскольку у женского пола половые хромосомы одинаковы, так как женский пол - гомогаметный, то каждая яйцеклетка несет Х-хромосому. Эта биологическая закономерность, обусловленная механизмом мейоза.
48)Понятие о генотипе и генофонде. Генетическая структура популяции,факторы ее изменяющие. Генотип-совокупность генов, полученных от родителей; Факторы изменяющие генетическую структуру популяций
Действие естественного отбора состоит в том, что преимущественное размножение имеют особи с высокой жизнеспособностью, плодовитостью, т.е. более приспособленные к условиям окружающей среды. При искусственном отборе значение имеют признаки продуктивности, и признаки приспособленности к условиям окружающей среды. Распространение мутаций может произойти в результате миграций. Когда импортные производители популяций были носителями мутаций и распространяли генетические аномалии при использовании при воспроизводстве местных популяций. Генетическая структура популяций может измениться в силу случайных генетико-автоматических процессов (дрейфа генов) – случайное ненаправленное изменение частот аллелей в популяции. В некоторых популяциях мутантный аллель полностью вытесняет нормальный – результат дрейфа генов. Генетическое здоровье популяции Результаты популяционных исследований имеют огромное практическое значение. В Италии, например, частота встречаемости определенных аллелей-мутантов в гетерозиготном состоянии достаточно велика, поэтому там проводится пренатальная диагностика ФКУ для своевременного медицинского вмешательства. В азиатских популяциях частота встречаемости мутантных аллелей в 10-20 раз ниже, чем в европейских, поэтому в странах этого региона осуществление пренатального скрининга не является первоочередной задачей. Таким образом, генетическая структура популяций — один из важнейших факторов, определяющих особенности передачи по наследству различных признаков. Пример ФКУ (как и многие другие факты) показывает, что специфика изучаемой популяции должна учитываться при исследовании механизмов передачи по наследству любого признака человека. Популяции человека подобны живым организмам, которые тонко реагируют на все изменения своего внутреннего состояния и находятся под постоянным влиянием внешних факторов. Мы начнем наше краткое знакомство с основными понятиями популяционной генетики с определенного упрощения: мы как бы на некоторое время выключим все многочисленные внешние и внутренние факторы, влияющие на естественные популяции, и представим себе некоторую популяцию в состоянии покоя. Затем мы будем «включать» один фактор за другим, добавляя их в сложную систему, определяющую состояние естественных популяций, и рассматривать характер их специфических влияний. Это позволит нам получить представление о многомерной реальности существования популяций человека. В популяционной генетике существует множество упрощающих моделей. Например, генетические изменения на популяционном уровне принято анализировать в рамках двух основных математических подходов - детерминистического и стохастического. Согласно детерминистической модели, изменения частот аллелей в популяциях при переходе от поколения к поколению происходят по определенной схеме и могут быть предсказаны, если: Существование популяций человека не вмещается в рамки данных условий, поэтому детерминистическая модель в своей крайней форме представляет абстракцию. В реальности частоты аллелей в популяциях изменяются и под действием случайных процессов. Изучение случайных процессов требует применения другого математического подхода — стохастического. Согласно стохастической модели, изменение частот аллелей в популяциях происходит по вероятностным законам, т.е. даже если исходные условия популяции прародителей известны, частоты встречаемости аллелей в дочерней популяции однозначно предсказать нельзя. Могут быть предсказаны только вероятности появления определенных аллелей с определенной частотой. Очевидно, что стохастические модели ближе к реальности и, с этой точки зрения, являются более адекватными. Однако математические операции намного легче производить в рамках детерминистических моделей, кроме того, в определенных ситуациях они представляют собой все-таки достаточно точное приближение к реальным процессам. Поэтому популяционная теория естественного отбора, которую мы рассмотрим далее, изложена в рамках детерминистической модели. Закон Харди-Вайнберга описывает популяции в состоянии покоя. В этом смысле он аналогичен первому закону Ньютона в механике, согласно которому любое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока действующие на него силы не изменят это состояние. Закон Харди-Вайнберга гласит: при отсутствии возмущающих процессов частоты генов в популяции не изменяются. Однако в реальной жизни гены постоянно находятся под воздействием процессов, изменяющих их частоты. Без таких процессов эволюция просто не происходила бы. Именно в этом смысле закон Харди-Вайнберга аналогичен первому закону Ньютона — он задает точку отсчета, по отношению к которой анализируются изменения, вызванные эволюционными процессами. К последним относятся мутации, миграции и дрейф генов. Мутации в популяциях Миграция Генетический след миграции. В США потомство от смешанных браков между белыми и черными принято относить к черному населению. Следовательно, смешанные браки можно рассматривать как поток генов из белой популяции в черную. Частота аллеля R°, контролирующего резус-фактор крови, составляет среди белых примерно Р= 0,028. В африканских популяциях, отдаленными потомками которых являются современные члены черной популяции США, частота этого аллеля равна р0 = 0,630. Предки современного черного населения США были вывезены из Африки примерно 300 лет назад (т.е. прошло примерно 10-12 поколений). Дрейф генов Случайным дрейфом генов называется изменение частот аллелей в ряду поколений, являющееся результатом действия случайных причин, например, резким сокращением размера популяции в результате войны или голода. Предположим, что в некоторой популяции частоты двух аллелей а и а равны 0,3 и 0,7 соответственно. Тогда в следующем поколении частота аллеля а может быть больше или меньше, чем 0,3, просто в результате того, что в наборе зигот, из которых формируется следующее поколение, его частота в силу каких-то причин оказалась отличной от ожидавшейся. Общее правило случайных процессов таково: величина стандартного отклонения частот генов в популяции всегда находится в обратной зависимости от величины выборки — чем больше выборка, тем меньше отклонение. В контексте генетики популяций это означает, что, чем меньше число скрещивающихся особей в популяции, тем больше вариативность частот аллелей в поколениях популяции. В небольших популяциях частота одного гена может случайно оказаться очень высокой.
49)Наследование качественных признаков. Наследование количественных признаков и их изменчивость. Все признаки у животных разделяются на две группы – качественные и количественные. К качественным признакам относятся: масть животных, пол, тип конституции, устойчивость к заболеваниям и другие. Большинство признаков у сельскохозяйственных животных относится к количественным. Величину этих признаков можно измерить и выразить числом. К этим признакам принадлежат: живая масса, величин удоя и жирность молока, физиологические показатели и другие. Эти признаки характеризуются непрерывной изменчивостью и варьируют в интервале от минимума до максимума. Особенностью количественных признаков является сложный характер их наследования. Каждый из этих признаков контролируется не одним, а большим числом генов. Такой тип наследования называется полимерией. Уровень проявления количественного признака зависит от числа доминантных генов и влияния факторов внешней среды. В результате этого изменчивость количественных признаков складывается из генотипической и паратической (средовой). Разные количественные признаки имеют неодинаковую степень генетической изменчивости. Определить долю наследственной изменчивости признака можно с помощью статистических методов. При изучении наследования количественных признаков используются такие понятия как наследуемость и коэффициент наследуемости. Наследуемость – это статистический термин, который показывает долю генетической изменчивости в общей изменчивости признака. Наследуемость характеризует количественный признак у группы животных и служит показателем для прогнозирования эффективности селекции по фенотипическим показателям признака. Коэффициент наследуемости показывает степень генетической детерминации количественного признака и выражает в долях единицы или процентах. Чем больше величина, тем больше изменчивость признака обусловлена генетическими факторами и меньше факторами среды. Если коэффициент наследуемой меньше 0,1 (или 10%), то увеличить значение признака методами массовой селекции очень трудно. Чем выше коэффициент наследуемости признака, тем эффективнее массовая селекция по нему. Способы определения коэффициента наследуемости основаны на сходстве между родственными животными. С.Райт предложил для определения величины этого показателя использовать пути связей между генотипами и фенотипами родственных животных. При этом, чем больше степень сходства между родственниками, тем выше наследуемость признака. Для вычисления коэффициента наследуемости использует корреляционный или дисперсионный анализы. В зависимости от того, между какими родственниками изучается, сходство применяют различные формулы для определения коэффициента наследуемости. На схеме приводятся пути связи между фенотипами и генотипами матери и дочери (по Райту Наследование качественных признаков. Здесь можно применить классические правила наследования Грегора Менделя, знания и взгляды которого являются главной предпосылкой для понимания более сложных процессов наследования полигенно обусловленных признаков (большего числа всех признаков вообще) и в целом процессов, связанных с разведением животных. 1. Правило единообразия. Только одна пара генов как основа: если спаривают гомозиготных родителей, отличающихся одним признаком, последующее поколение F1 внешне и генетически единообразно. 2. Правило расщепления (простой менделизм): если спаривают двух родителей поколения F1, поколение F2 расщепляется в устойчивом числовом соотношении. 3. Правило независимости. Две или более пары генов как основа наследования (правило новых комбинаций): если спаривают гомозиготных родителей, различающихся одним или несколькими признаками, то аллели различных генов комбинируются свободно независимо друг от друга (ограничение только в случае сцепления и кроссинговера). Короче говоря, менделевские законы описывают закономерности распределения генов в процессе оплодотворения (яйцеклеток и сперматозоидов). Они необходимы для понимания основных генетических взаимосвязей и являются основой популяционной генетики. Эти правила позволяют сделать два важных вывода: 1. Каждый ген существует попарно в двух аллелях на гомологичных хромосомах; 2. В процессе развития половых клеток (сперматозоидов и яйцеклеток) происходить (во время мейоза) случайное деление пополам числа хромосом и тем самым перераспределение наследственных факторов. Различные взаимоотношения генов и аллелей обуславливают типы наследственности, которые приводятся ниже. - Доминатность и рецессивность. Пример: в месте расположения генаBlack (B, черный) находятся аллели Вb. У соответствующего добермана черный окрас, так как аллель В доминантен над аллелям b (коричневого окраса). При совместном расположении аллель b рецессивен по отношению к В, поэтому В обязательно подавит b. - Промежуточный тип наследования, например, ген для цвета подпала. - Множественная аллельность, например, в локусе гена дикого окраса. Имеется в виду локус сложных аллелей А (агути) - Сцепление, когда два гена лежат на одной и той же хромосоме и поэтому наследуются "сцепленно". - Эпистаз, при котором два различных гена при проявлении признака вступают в взаимодействие друг с другом, например, гены цвета - В и D. - Наследование пола, имеет место у всех млекопитающих, у которых так называемые половые хромосомы определяют пол зародыша: ХХ - самка, ХY -самец. Однако на половых хромосомах находятся и многие другие гены, которые определяют другие признаки.
|