Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАЧА 4. Плоская задача теории упругости





 

Условие. Упругое тело заданной формы находится в условиях плоской задачи. Схема задачи и нагрузка даны на рис. 4.1 в соответствии с номером варианта.

 

Требуется:

5. Проверить, является ли заданная функция напряжений решением плоской задачи теории упругости.

6. Найти выражения для напряжений.

7. Составить граничные условия и найти постоянные, входящие в выражения для напряжений.

8. Проверить, удовлетворяют ли окончательные выражения для напряжений дифференциальным уравнением равновесия.

9. Построить эпюры напряжений в характерных сечениях.

 

 

Для упругого полубесконечного массива, находящегося в условиях плоской задачи (плоская деформация) под действием равномерно распределенной нагрузки (рис. 4.2) функция напряжений задана в виде

1. Вычисляются производные от функции напряжений:

 

 

Рис. 4.1. Схемы к задаче 4

 

 

 

Рис. 4.1. Схемы к задаче 4 (продолжение)

 

 

 

Рис. 4.1. Схемы к задаче 4 (окончание)


 

Рис. 4.2.

Бигармоническое уравнение записывается в развернутом виде с учетом полученных выражений для вторых производных:

Подстановка полученных соотношений в бигармоническое уравнение обращает его в тождество

Следовательно, заданная функция напряжений является решением плоской задачи.

 

2. Записываются выражения для напряжений. С учетом отсутствия объемных сил

окончательно

.

 

3. Из граничных условий определяются постоянные A, B, C, D.

 

а) Горизонтальная грань. Геометрическое уравнение грани . Для этой грани направляющие косинусы

проекции нагрузки на координатные оси (рис 4.3). Статические граничные условия

после подстановки формул для напряжений с учетом уравнения грани принимают вид:

(1)

(2)

 

б) Наклонная грань. Геометрическое уравнение грани Направляющие косинусы

нагрузки Аналогично горизонтальной грани записываются два уравнения:

(3)

 

(4)

 

Совместное решение четырех уравнений дает выражения для постоянных

Выражения для напряжений после подстановки постоянных принимают окончательный вид:

 

4. Для проверки полученные выражения для напряжений подставляются в дифференциальные уравнения равновесия

В рассматриваемом примере проекции объемных сил на координатные оси , производные

Подстановка производных показывает, что дифференциальные уравнения равновесия удовлетворяются тождественно.

 

5. Характерным сечением в данной задаче является горизонтальное сечение (рис. 4.3). После подстановки этого значения в формулы для напряжений получаются соотношения для построения эпюр:

 

При этом из схемы задачи следует, что .

Для построения эпюр напряжений необходимо задаваться числовыми значениями величины На рис. 4.3 показаны эпюры напряжений, построенные при по точкам При этом в формулы угол нужно подставлять в радианах. Для более точного выявления очертания эпюр необходимо брать точки чаще.

 

При , , , ;

, , , ;

, , , ;

, , , .

 

 

Рис. 4.3. Плоская задача теории упругости

Выполним проверку статических граничных условий на грани . Для этого рассмотрим дифференциально малый элемент тела, находящийся на поверхности в сечении (рис. 4.4).

 

 
  Рис. 4.4  

 

Проекции сил, действующих на гранях материальной точки, на координатные оси

, ,

следовательно материальная точка находится в равновесии и эпюры напряжений построены верно.

 







Дата добавления: 2015-09-04; просмотров: 2052. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия