Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 7. Теория ожидаемой полезности





В 1713 году швейцарский профессор Николас Бернулли сформулировал интересный вопрос. Выражаясь современным языком, Бернулли интересовало, сколько денег рассчитывают люди истратить в игре со следующими правилами: 1) монетку подкидывают, пока она не выпадет решкой, 2) игрок платит два доллара, если после первого подбрасывания монетка выпала решкой, 4 доллара — если решка впервые выпала при втором подбрасывании, 8 долларов — если решка впервые появилась при третьем подбрасывании, 16 долларов — если решка впервые выпала только в четвертом подбрасывании, и т.д. (Анкета содержит описание этой игры в п. 30, так что можете взглянуть на свой ответ.) Большинство людей рассчитывают заплатить лишь несколько долларов.

С тех пор как Бернулли впервые поставил эту проблему, она была названа «Санкт- Петербургским парадоксом». Парадокс потому, что ожидаемая ценность игры (или количество денег, которые вам придется заплатить до первого выпадения решки) огромна и очень немногие готовы заплатить крупную сумму денег за участие в ней. Чтобы проверить, действительно ли возможная плата бесконечно велика, мы можем подсчитать ожидаемую ценность игры Бернулли, умножив плату за каждый возможный исход игры на шансы этого исхода*. Шансы выпадения монетки решкой после первого подбрасывания (которое приведет к уплате 2 долларов) равны 1/2; шансы, что после одного выпадения орла выпадет решка (плата 4 доллара) равны 1/4; шансы, что решка последует за двумя орлами (плата 8 долларов)

* В этом разделе книги больше математики и теории, чем в других ее частях. Разумеется, некоторые читатели могут счесть этот материал более сложным, чем темы, обсуждавшиеся в предыдущих разделах. Если вы не знакомы с терминологией, не расстраивайтесь: основные пункты будут понятны вам без всякого знания математики, а в последующих разделах ее вообще очень-очень мало.

равны 1/8; короче, ожидаемая ценность (ОЦ) составит (где К - количество подбрасываний):

ОЩза игру) = (V2)($2) + (V4)($4) + (V8)($8) +... + (7

= $1 + $1 + $1 + $1 +... + $1 = бесконечная сумма денег

Вопрос состоит в том, почему люди не собираются платить больше, чем несколько долларов, чтобы сыграть в игру с вероятным крупным выигрышем.

Спустя 25 лет, как Николас Бернулли поставил эту проблему, его младший кузен математик Дэниел Бернулли пришел к решению, которое включало в себя два первых положения современной ему теории принятия решений. Дэниел Бернулли (1738; 1954) обосновал это тем, что общая стоимость или «выгода» игры (в деньгах) расходится с итоговым выигрышем (или с уже имеющейся у игрока суммой). Например, он писал (с. 24): «Сумма в тысячу дукатов более существенна для бедняка, чем для богача, но оба получат одно и то же». Бернулли говорил, что количество денег может быть представлено следующим образом:

я

QQ

Богатство

Учитывая, что количество добавляющихся денег расходится с богатством, Бернулли смог показать, что в конечном счете выгода от Санкт-Петербургской игры не бесконечна. (109:()







Дата добавления: 2015-09-04; просмотров: 393. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия