Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

V2: Поперечная сила и изгибающий момент и их эпюры





 

I: K=A

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

+:

-:

-:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

+:

-:

-:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы:

+: ;

-: ;

-: ;

-: .

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+: ;

-: ;

-: ;

-: .

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q≠0

-: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

 

I: K=С

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q≠0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q≠0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q=0

-: M=0, Q≠0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы:

+: M=0, Q=0

-: M=0, Q≠0

-: M≠0, Q=0

-: M≠0, Q≠0

 

I: K=A

S: На тех участках балки, где распределенная нагрузка отсутствует:

+: поперечные силы постоянны, а изгибающие моменты меняются по линейному закону

-: поперечные силы равны 0

-: изгибающие моменты равны 0

-: эпюра изгибающих моментов изображается кривой линией

 

I: K=A

S: На тех участках балки, где действует распределенная нагрузка:

+: поперечные силы изменяются по длине балки: эпюры изгибающих моментов ограничены кривыми

-: изгибающие моменты изменяются по линейному закону

-: поперечные силы неизменны

-: изгибающие моменты неизменны

 

I: K=B

S: На тех участках балки, где поперечная сила имеет постоянное значение:

+: эпюра изгибающих моментов ограничена прямой линией

-: эпюра изгибающих моментов постоянна

-: эпюра изгибающих моментов носит убывающий характер

-: эпюра изгибающих моментов носит возрастающий характер

 

I: K=B

S: Для балки, снабженной шарниром, в шарнире

+: изгибающий момент равен 0

-: поперечная сила равна 0

-: изгибающий момент принимает экстремальное значение

-: поперечная сила минимальна

 

I: K=C

S: Любой скачок на эпюре изгибающих моментов равен:

+: сосредоточенному моменту, приложенному в этом сечении

-: поперечной силе, приложенной в этом сечении

-: сумме всех изгибающих моментов, приложенных к контуру

-: внешнему сосредоточенному моменту

 

I: K=C

S: Любой скачок на эпюре поперечных сил равен:

+: сосредоточенной силе, приложенной в этом сечении

-: сосредоточенному моменту, приложенному в этом сечении

-: сумме всех изгибающих моментов, приложенных к конструкции

-: сумме всех поперечных сил, приложенных к конструкции

 

I: K=A

S: На тех участках балки, где поперечные силы положительны…

+: изгибающий момент возрастает

-: изгибающий момент убывает

-: действует распределенный момент

-: изгибающий момент имеет постоянное значение

 

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы…

-:

-:

-:

+:

 

I: K=В

S: В сечении 1-1 имеют место внутренние силовые факторы…

+:

-:

-:

-:

 

I: K=A

S: В сечении 1-1 имеют место внутренние силовые факторы…

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

-: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

+: M≠0,Q=0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы…

 

+: M≠0,Q=0

-: M=0,Q≠0

-: M≠0,Q≠0

-: M=0,Q=0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: Укажите эпюру поперечной силы в сечениях консольной балки…

 

-:

+:

-:

-:

 

I: K=B

S: Укажите эпюру изгибающего момента в сечениях консольной балки…

 

+:

-:

-:

-:

 

I: K=B

S: Эпюра поперечной силы в сечениях консольной балки…

+:

-:

-:

-:

 

I: K=B

S: Эпюра изгибающего момента в сечениях консольной балки…

-:

 

-:

 

+:

 

-:

 

I: K=B

S: N – продольная сила, Qy – поперечная сила, Mx – изгибающий момент

В плоских рамах возникают:

+: силовые факторы N, Qy, Mx

-: силовые факторы N, Qy

-: силовые факторы Qy, Mx

-: силовые факторы N, Mx

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+:N=0, Q≠0, M≠0

-: N≠0, Q≠0, M≠0

-: N=0, Q=0, M=0

-: N≠0, Q=0, M=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

-: N≠0, Q≠0, M≠0

-: N=0, Q≠0, M≠0

 

I: K=C

S: В сечении 1-1имеют место силовые факторы:

+: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

-: N≠0, Q=0, M≠0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M≠0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N=0, Q=0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N=0, Q≠0, M≠0

-: N=0, Q=0, M≠0

-: N≠0, Q=0, M≠0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N=0, Q≠0, M=0

-: N=0, Q≠0, M≠0

-: N=0, Q=0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

 

I: K=C

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q≠0, M≠0

-: N≠0, Q=0, M=0

 

I: K=A

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N≠0, Q≠0, M≠0

 

I: K=C

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

 







Дата добавления: 2015-09-04; просмотров: 3286. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия