Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

V2: Поперечная сила и изгибающий момент и их эпюры





 

I: K=A

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

+:

-:

-:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

+:

-:

-:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы …

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы:

+: ;

-: ;

-: ;

-: .

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+: ;

-: ;

-: ;

-: .

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q≠0

-: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

 

I: K=С

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q≠0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M=0, Q=0

-: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q≠0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0, Q≠0

-: M≠0, Q=0

-: M=0, Q=0

-: M=0, Q≠0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы:

+: M=0, Q=0

-: M=0, Q≠0

-: M≠0, Q=0

-: M≠0, Q≠0

 

I: K=A

S: На тех участках балки, где распределенная нагрузка отсутствует:

+: поперечные силы постоянны, а изгибающие моменты меняются по линейному закону

-: поперечные силы равны 0

-: изгибающие моменты равны 0

-: эпюра изгибающих моментов изображается кривой линией

 

I: K=A

S: На тех участках балки, где действует распределенная нагрузка:

+: поперечные силы изменяются по длине балки: эпюры изгибающих моментов ограничены кривыми

-: изгибающие моменты изменяются по линейному закону

-: поперечные силы неизменны

-: изгибающие моменты неизменны

 

I: K=B

S: На тех участках балки, где поперечная сила имеет постоянное значение:

+: эпюра изгибающих моментов ограничена прямой линией

-: эпюра изгибающих моментов постоянна

-: эпюра изгибающих моментов носит убывающий характер

-: эпюра изгибающих моментов носит возрастающий характер

 

I: K=B

S: Для балки, снабженной шарниром, в шарнире

+: изгибающий момент равен 0

-: поперечная сила равна 0

-: изгибающий момент принимает экстремальное значение

-: поперечная сила минимальна

 

I: K=C

S: Любой скачок на эпюре изгибающих моментов равен:

+: сосредоточенному моменту, приложенному в этом сечении

-: поперечной силе, приложенной в этом сечении

-: сумме всех изгибающих моментов, приложенных к контуру

-: внешнему сосредоточенному моменту

 

I: K=C

S: Любой скачок на эпюре поперечных сил равен:

+: сосредоточенной силе, приложенной в этом сечении

-: сосредоточенному моменту, приложенному в этом сечении

-: сумме всех изгибающих моментов, приложенных к конструкции

-: сумме всех поперечных сил, приложенных к конструкции

 

I: K=A

S: На тех участках балки, где поперечные силы положительны…

+: изгибающий момент возрастает

-: изгибающий момент убывает

-: действует распределенный момент

-: изгибающий момент имеет постоянное значение

 

 

I: K=B

S: В сечении 1-1 имеют место внутренние силовые факторы…

-:

-:

-:

+:

 

I: K=В

S: В сечении 1-1 имеют место внутренние силовые факторы…

+:

-:

-:

-:

 

I: K=A

S: В сечении 1-1 имеют место внутренние силовые факторы…

-:

-:

-:

+:

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

-: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

+: M≠0,Q=0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы…

 

+: M≠0,Q=0

-: M=0,Q≠0

-: M≠0,Q≠0

-: M=0,Q=0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: В сечении 1-1 имеют место силовые факторы…

+: M≠0,Q≠0

-: M=0,Q≠0

-: M=0,Q=0

-: M≠0,Q=0

 

I: K=B

S: Укажите эпюру поперечной силы в сечениях консольной балки…

 

-:

+:

-:

-:

 

I: K=B

S: Укажите эпюру изгибающего момента в сечениях консольной балки…

 

+:

-:

-:

-:

 

I: K=B

S: Эпюра поперечной силы в сечениях консольной балки…

+:

-:

-:

-:

 

I: K=B

S: Эпюра изгибающего момента в сечениях консольной балки…

-:

 

-:

 

+:

 

-:

 

I: K=B

S: N – продольная сила, Qy – поперечная сила, Mx – изгибающий момент

В плоских рамах возникают:

+: силовые факторы N, Qy, Mx

-: силовые факторы N, Qy

-: силовые факторы Qy, Mx

-: силовые факторы N, Mx

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+:N=0, Q≠0, M≠0

-: N≠0, Q≠0, M≠0

-: N=0, Q=0, M=0

-: N≠0, Q=0, M=0

 

I: K=A

S: В сечении 1-1 имеют место силовые факторы:

+: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

-: N≠0, Q≠0, M≠0

-: N=0, Q≠0, M≠0

 

I: K=C

S: В сечении 1-1имеют место силовые факторы:

+: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

-: N≠0, Q=0, M≠0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M≠0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N=0, Q=0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N=0, Q≠0, M≠0

-: N=0, Q=0, M≠0

-: N≠0, Q=0, M≠0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N=0, Q≠0, M=0

-: N=0, Q≠0, M≠0

-: N=0, Q=0, M≠0

 

I: K= B

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K=C

S: В сечении 1-1 имеют место силовые факторы:

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M=0

 

I: K=C

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q≠0, M≠0

-: N≠0, Q=0, M=0

 

I: K=A

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N≠0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N=0, Q=0, M=0

-: N=0, Q≠0, M≠0

-: N≠0, Q=0, M=0

-: N≠0, Q≠0, M≠0

 

I: K=C

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

I: K= B

S: в сечении 1-1 имеют место силовые факторы

+: N≠0, Q=0, M=0

-: N≠0, Q≠0, M=0

-: N=0, Q=0, M≠0

-: N=0, Q≠0, M≠0

 

 







Дата добавления: 2015-09-04; просмотров: 3286. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия