Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поглощающие марковские цепи





Как указывалось выше, у поглощающих ДМЦ имеется множество, состоящее из одного или нескольких поглощающих состояний.

Для примера рассмотрим переходную матрицу, описывающую переходы в системе, имеющей 4 возможных состояния, два из которых являются поглощающими. Матрица перехода такой цепи будет иметь вид:

. (8.5)

Практически важным является вопрос о том, сколько шагов сможет пройти система до остановки процесса, то есть поглощения в том или ином состоянии.Для получения дальнейших соотношений путем переименования состояний матрицу (8.5) переводят к блочной форме:

. (8.6)

Такая форма позволяет представить матрицу (8.6) в каноническом виде:

, (8.6а),

где - единичная матрица;

- нулевая матрица;

- матрица, описывающая переходы в системе из невозвратного множества состояний в поглощающее множество;

- матрица, описывающая внутренние переходы в системе в невозвратном множестве состояний.

На основании канонической формы (8.6а) получена матрица, называемая фундаментальной.

M [2] = (I [2] - Q [2]) -1 , (8.7)

В матрице (8.7) символ (-1) означает операцию обращения, то есть

М * М -1 = 1. (8.8)

После соответствующих преобразований матрица (8.7) примет вид:

. (8. 7 а)

Каждый элемент матрицы (8.7а) соответствует среднему числу раз попадания системы в то или иное состояние до остановки процесса (поглощения).

Если необходимо получить общее среднее количество раз попадания системы в то или иное состояние до поглощения, то фундаментальную матрицу М необходимо умножить справа на вектор-столбец, элементами которого будут единицы, то есть

М = М * x < 2>, (8.8) где x < 2> = .

Для иллюстрации приведем конкретный числовой пример: пусть известны значенияпереходных вероятностей матрицы П[3] с одним поглощающим состоянием: P11 = 1; P12 = P13 = 0; P21 = 0,25; P22 = 0,5; P23 = 0,25; P31 = 0,5; P32 = 0,5; P33 = 0.

Переходная матрица в блочной системе будет выглядеть так:

= .

В данном случае

; ; ; .

Проделаем необходимые вычисления:

;

;

.

В данном случае компоненты вектора МS означают, что если процесс начался с состояния S2 , общее среднее число шагов процесса до поглощения будет равно 3,34 и, соответственно, если процесс начинается с состояния S3 , то - 2,26.

В конкретных задачах, конечно, более информативным результатом будет не количество шагов, а какие-либо временные или экономические показатели. Этот результат легко получить, если связать пребывание в каждом состоянии с соответствующими характеристиками. Очевидно, набор этих характеристик составит вектор, на который нужно умножить МS слева.

Так, если задать в нашем примере время пребывания в состоянии S2 t2 = 20 час, а в состоянии S3 - t3 = 30 час, то общее время до поглощения будет равно:

час.

В случаях, когда марковская цепь включает несколько поглощающих состояний, возникают такие вопросы: в какое из поглощающих состояний цепь попадет раньше (или позже); в каких из них процесс будет останавливаться чаще, а в каких - реже? Оказывается, ответ на эти вопросы легко получить, если снова воспользоваться фундаментальной матрицей.

Обозначим через bij вероятность того, что процесс завершится в некотором поглощающем состоянии Sj при условии, что начальным было состояние Si. Множество состояний bijснова снова образует матрицу, строки которой соответствуют невозвратным состояниям, а столбцы - всем всем поглощающим состояниям. В теории ДМЦ доказывается, что матрица В определяется следующим образом:

, (8.9)

где

М - фундаментальная матрица с размерностью S;

R - блок фундаментальной матрицы с размерностью r.

Рассмотрим конкретный пример системы с четырьмя состояниями S1 - S4, две из которых - S1, S2 - поглощающие, а две - невозвратные: S3 и S4 (рис.8.10):

S1 S2 S3 S4

Рис. 8.10. Система с четырьмя состояниями

Для наглядности и простоты вычислений обозначим переходные вероятности следующим образом:

P11 = P22 = 1; P31 = P43 = q; P34 = P42 = P.

Остальные значения вероятностей будут нулевыми. Каноническая форма матрицы перехода в этом случае будет выглядеть так:

.

Фундаментальная матрица после вычислений примет вид:

.

Тогда, согласно формуле (8.9), матрица вероятностей поглощения вычисляется так:

.

Поясним вероятностный смысл полученной матрицы с помощью конкретных чисел. Пусть p = 0,7, а q = 0,3. Тогда, после подстановки полученных значений в матрицу В, получим:

S1 S2

.

Таким образом, если процесс начался в S3, то вероятность попадания его в S1 равна 0,38, а в S2 - 0,62. Отметим одно интересное обстоятельство: несмотря на то, что, казалось бы, левое поглощающее состояние ("левая яма") находится рядом с S3, но вероятность попадания в нее почти в два раза меньше, чем в "удаленную яму" - S2. Этот интересный факт подмечен в теории ДМЦ и объясняется он тем, что p> q, то есть процесс имеет как бы "правый уклон". Рассмотренная выше модель называется в теории ДМЦ моделью случайного блуждания. Такими моделями часто объясняются многие физические и технические явления и даже поведение игроков во время различных игр.

В частности, в рассмотренном примере объясняется факт того, что более сильный игрок может дать заранее значительное преимущество ("фору") слабому противнику и все равно его шансы на выигрыш будут более предпочтительными.

Кроме указанных выше средних характеристик вероятностного процесса с помощью фундаментальной матрицы можно вычислить моменты и более высоких порядков. В частности, дисперсия числа пребывания в том или ином состоянии - D определяется с помощью следующей матрицы:

, (8.10)

где

Мdg - диагональная матрица, т.е. матрица, полученная из М путем оставления в ней лишь диагональных элементов и замены остальных элементов нулями. Например, приведенная выше матрица (8.7а) будет иметь вид:

.

В свою очередь, матрица М представляет собой матрицу, полученную из М путем возведения в квадрат каждого ее элемента, то есть для (8.7а) будем иметь:

.

Аналогичным образом определяема и дисперсия для общего количества раз пребывания в том или ином состоянии Ме, Обозначим ее Dе.

. (8.11)







Дата добавления: 2015-09-04; просмотров: 2013. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия