Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эргодические цепи





Как указывалось выше под эргодической ДМЦ понимается цепь, не имеющая невозвратных состояний. Таким образом, в такой цепи возможны любые переходы между состояниями. Напомним, что эргодические цепи могут быть регулярными и циклическими. Определение таких цепей было дано выше.

Поскольку согласно данному выше определению в эргодической ДМЦ на любом шаге должны быть возможными любые переходы, то очевидно при этом, что переходные вероятности не должны равняться нулю. Оказывается, из этого условия вытекают некоторые замечательные свойства регулярных ДМЦ:

  1. . Степени П[n]k при к (r) 0 стремятся к стохастической матрице A[n];
  1. . Каждая строка матрицы А[n] представляет один и тот же вероятностный вектор

a = < а1, а2... аn >, (8.12)

все компоненты которого положительны.

Вектор (8.12) в теории ДМЦ занимает особое место из-за наличия многих приложений и называется вектором предельных или финальных вероятностей (иногда - стационарным вектором). Финальные вероятности определяют с помощью векторно-матричного уравнения

, (8.13)

которое в развернутом виде будет выглядеть так:

(8.13а)

К уравнениям (8.13а) можно дополнительно добавить условие нормировки:

. (8.14)

 

 

Тогда любое из уравнений в (8.14) можно исключить.

Также как и в случае поглощения ДМЦ многие характеристики эргодических цепей определяются с помощью фундаментальной матрицы, которая в этом случае будет иметь вид:

. (8.15)

Для эргодических цепей характеристикой, имеющей важное практическое значение, является продолжительность времени, за которое процесс из состояния Si впервые попадает в Sj, так называемое время первого достижения. Матрица средних времен достижения определяется по формуле:

, (8.20)

где

Mz - фундаментальная матрица (8.15);

Mzdg - диагональная матрица, образованная из фундаментальной, заменой всех элементов, кроме диагональных - нулями;

D - диагональная матрица с диагональными элементами d ii= 1/a i;

Е - матрица, все элементы которой равны единице.

Матрица дисперсий времени первого достижения имеет несколько более сложный вид:

, (8.21)

где кроме уже упомянутых обозначений встречается новое - (МzЧ Мt) dg, обозначающее диагональную матрицу, полученную из матричного прозведения матриц МzЧ Мt.

 







Дата добавления: 2015-09-04; просмотров: 524. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия