Управляемые марковские цепи
Как указывалось выше, под управляемыми марковскими процессами понимают такие, у которых имеется возможность до определенной степени управлять значениями переходных вероятностей. В качестве примеров таких процессов можно привести любые торговые операции, у которых вероятность сбыта и получения эффекта может зависеть от рекламы, мероприятий по улучшению качества, выбора покупателя или рынка сбыта и т.д. В лесной отрасли эффективность может зависеть, например, от региональной лесомелиорации, оптимальной стратегии лесопользования (рубки ухода, технологические приемы, комплекс машин, дорожная сеть и т.д.) Ниже будут приведены конкретные примеры, здесь же мы остановимся на особенностях применяемого математического аппарата. Очевидно, что при создании математических моделей в данном случае должны фигурировать следующие компоненты:
где i О S - номер состояния системы;
Управляемой цепью Маркова (УЦМ) называется случайный процесс, обладающий марковским свойством и включающий в качестве элементов математической модели конструкцию (кортеж) < Ki, П[s](k), R[s](k) >. Решение, принимаемое в каждый конкретный момент (шаг процесса) назовем частным управлением. Таким образом, процесс функционирования системы описываемой УЦМ, выглядит следующим образом:
Очевидно, общий доход за n-шагов является случайной величиной, зависящей от начального состояния и качества принимаемых в течение хода процесса решений, причем это качество оценивается величиной среднего суммарного дохода (при конечном времени) или среднего дохода за единицу времени (при бесконечном времени). Стратегией p называется последовательность решений: p = (f 1, f 2,.... f n), (8.22) где f n = < k1, k2,.... kn> О k - вектор управления. Задание стратегии означает полное описание конкретных решений, принимаемых на всех шагах процесса в зависимости от состояния, в котором находится в этот момент процесс. Если в последовательности (вектора) p все f одинаковы, то такая стратегия называется стационарной, т.е. не зависящей от номера шага. Стратегия p = (f 1, f 2,.... f n) называется марковской, если решение f n принимаемое в каждом конкретном состоянии зависит только от момента времени n, но не зависит от предшествующих состояний. Оптимальной будет такая стратегия, которая максимизирует полный ожидаемый доход для всех i и n. В теории УМЦ разработаны два метода определения оптимальных стратегий: рекуррентный и итерационный []. Первый, рекуррентный метод, применяется чаще всего при сравнительно небольшом числе шагов n. Его идея основана на применении принципа Беллмана и заключается в последовательной оптимизации дохода на каждом шаге с использованием рекурентного уравнения следующего вида:
где
Таким образом, данный метод, по существу, аналогичен методу динамического программирования, отличием является лишь то, что на каждом шаге учитывается вероятность попадания системы в то или иное состояние. Поэтому этот метод называют стохастическим динамическим программированием. Конкретное применение метода будет рассмотрено ниже на примере. Второй - итерационный метод оптимизации применяется при неограниченном числе этапов (шагов) процесса. Этот метод использует свойство эргодичности марковской цепи и заключается в последовательном уточнении решения путем повторных расчетов (итераций). При этих уточнениях находят решение, обеспечивающее в среднем минимум дохода при большом числе шагов. Оно уже не будет зависеть от того, на каком шаге производится оценка оптимальной стратегии, то есть является справедливым для всего процесса, независимо от номера шага. Важным достоинством метода является, кроме того, и то, что он дает возможность определить момент прекращения дальнейших уточнений. Главным отличием итерационного метода от рассмотренного выше, рекурентного, заключается в том, что в данном случае используется матрица предельных (финальных) вероятностей, где вследствие свойства эргодичности переходные вероятности постоянны на всех шагах процесса. Поскольку матрица доходов состоит также из постоянных, не зависимых от n величин, то можно предположить, что с ростом n общая величина доходов будет возрастать линейно. Легко заметить, что при таком представлении зависимости Vi(n) величина непосредственно ожидаемого дохода q (см. формулу (8.23)) заменяется g. Отличие здесь лишь в том, что g является величиной постоянной для всего процесса, в то время как q меняется на каждом шаге. Величина Vi(n) показывает, на сколько в среднем отличается доход, когда процесс заканчивается в том или ином состоянии, В теории марковских цепей Vi(n) называют весом, так как разница Vi(0) - V2(0) при двух состояниях показывает средний выигрыш от того, в каком состоянии мы находимся в конце процесса (независимо от выбранной стратегии). Таким образом, подводя итоги общих рассуждений, можно сказать, что свойство эргодичности позволяет нам считать справедливым приближенное равенство:
На этом предположении и основан итерационный метод. Суть его сводится к тому, что при разных стратегиях путем последовательных приближений определяются значения сумм
Таким образом, если ранее (при рекурентном методе) искалась стратегия, обеспечивающая на каждом шаге максимум суммы непосредственно ожидаемого дохода и дохода на предшествующих шагах, то здесь находится стратегия, обеспечивающая максимум средней прибыли и относительного веса сразу для всего процесса. При этом производятся последовательные расчеты - итерации, на каждом этапе которых уточняются значения угловых коэффициентов и весов, обеспечивающие максимум доходов. Конкретные примеры расчетов как по первому, так и по второму методам будут даны ниже.
|