Студопедия — Микромир: концепции современной физики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Микромир: концепции современной физики






МАТЕРИИ В МИКРОМИРЕ

Согласно современным научным взглядам, все природные объекты представляют собой упорядоченные, струк­турированные, иерархически организованные системы. Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение. Выделяются три уровня строения материи.

Макромир — мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта; пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Микромир — мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная размерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечно­сти до 10-24 сек.

Мегамир — мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.

 

Микромир: концепции современной физики

Квантово-механическая концепция описания микромира. Изучая микрочастицы, ученые столкнулись с парадоксаль­ной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства. Первый шаг в этом направлении был сделан немецким фи­зиком М. Планком (1858-1947).

В процессе работы по исследованию теплового излучения «абсолютно черного» тела М. Планк пришел к ошеломляю­щему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых коли­чествах, а лишь в известных неделимых порциях — квантах. Величина этих мельчайших порций энергии определяется через число колебаний соответствующего вида излучения и универсальную естественную константу, которую М. Планк ввел в науку под символом h: Е = hy, ставшим впо­следствии знаменитым (где – квант энергии, у – частота).

Полученную формулу Планк доложил 19 декабря 1900 на заседании Берлинского физического общества. В истории физики этот день счита­ется днем рождения квантовой теории и всей атомной физики, этот день знаменует начало новой эры естествозна­ния.

Великий немецкий физик-теоретик А. Эйнштейн (1879-1955) перенес в 1905 г. идею кванто­вания энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете. Представление о свете как о дожде быстро движущихся квантов было чрезвычайно смелым, в правиль­ность которого вначале поверили немногие. С расширением квантовой гипотезы до квантовой теории света был не согласен сам М. Планк, относивший свою квантовую формулу только к рассматриваемым им законам теплового из­лучения черного тела.

А. Эйнштейн же предположил, что речь идет о естественной закономерности всеобщего характера, и пришел к выводу, что следует признать корпускуляр­ную структуру света. Квантовая теория света А. Эйнштей­на, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем свето­вая энергия имеет прерыв­ную структуру. Свет может рассматриваться как поток световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим числом колебаний. Свет различной окраски состоит из световых квантов различной энергии.

Стало возможным наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Явление фотоэффекта было обнаружено во второй половине 19 века, а в 1888—1890 годах фотоэффект систематически изучал русский физик Александр Григорьевич Столетов. Внешне эффект проявлялся в том, что при падении на отрицательно заряженную металлическую пластинку светового потока соединенный с пластинкой электроскоп показывает наличие мгновенного электрического тока. Однако ток протекает лишь по замкнутой цепи, а цепь «металлическая пластинка – электроскоп» незамкнута. А.Эйнштейн показал, что такое замыкание цепи происходит посредством потока электронов, выбиваемых фотонами с поверхности пластинки.

Экспери­менты показали, что наличие или отсутствие фотоэффекта оп­ределяется частотой падающей волны. Если предположить, что каждый электрон вырывается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота, достаточно велика для преодоления сил связи элек­трона с веществом.

Рис. Схема фотоэффекта

За эту работу Эйнштейн в 1922 г. получил Нобелевскую премию по физике. Его теория получила подтверждение в экспериментах американского физика Р. Э. Милликена (1868-1953). Откры­тое в 1923 г. американским физиком А. X. Комптоном (1892-1962) явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило кванто­вую теорию света.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его вол­новые свойства, а при фотоэффектекорпускулярные. Основная характеристика его дискретности (присущая ему порция энергии) вычислялась через чисто волновую характе­ристику – частоту у (Е = hy). Таким образом, обнаружилось, что для описания поля необходим не только континуальный, но и корпускулярный подход.

Не осталось неизменным и представление о подходах к исследованию вещества: в 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о волновых свойствах материи, о необходимости использовать волновые и корпускулярные представления не только в теории света, но также и в теории вещества. Он утверждал, что волновые свойства, наряду с корпускулярными, присуши всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам. Согласно де Бройлю, любому телу с массой т, движущемуся со скоростью v, соответствует волна

 

 

Фактически ана­логичная формула была известна раньше, но только примени­тельно к квантам света — фотонам.

В 1926 г. австрийский физик Э. Шредингер (1887-1961), нашел матема­тическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Английский физик П. Дирак (1902-1984) обобщил его. Смелая мысль Л. де Бройля о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве.

Наиболее убедительным свидетельством правоты Де Бройля стало обнаружение в 1927 г. ди­фракции электронов американскими физиками К. Дэвиссоном и Л. Джермером. В дальнейшем были выполнены опыты по об­наружению дифракции нейтронов, атомов и даже молекул. Еще более важным было открытие новых элементар­ных частиц, предсказанных на основе системы формул разви­той волновой механики.

Таким образом, на смену двум различным подходам к исследованию двух различных форм материи: корпускулярному и волновому – пришел единый подход – корпускулярно-волновой дуализм. Признание корпускулярно-волнового дуализма в современной физике стало всеобщим: любой материальный объект характери­зуется наличием как корпускулярных, так и волновых свойств.

Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В. Гейзенбергом (1901-76), и принципе дополнительности датского физика Н. Бора (1885-1962),.

Суть соотношения неопределенностей В. Гейзенберга заключается в том, что нельзя одинаково точно определить взаимодополнительные характеристики микрочастицы, например, координаты частицы и ее импульс (количество движения). Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И, наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Однако мы, лю­ди, живем в макромире и в принципе не можем построить на­глядную модель, которая была бы адекватна микромиру. Соотно­шение неопределенностей есть выражение невозможности на­блюдать микромир, не нарушая его. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное определение места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при на­блюдении отклонения лучей.

Фундаментальным принципом квантовой механики является также принцип допол­нительности, которому Н. Бор дал следующую формулировку: «Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего»[1].

Таким образом, корпускулярная и волновая картины должны дополнять одна другую, т.е. быть комплементарными. Только при учете обоих аспектов можно получить общую кар­тину микромира. Имеется два класса при­боров: в одних квантовые объекты ведут себя как волны, в других – подобно частицам. М. Борн (1882-1970) заметил, что волны и частицы – это «проекции» физической реальности на экспериментальную си­туацию.

Атомистическая концепция строения материи. Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, была возрождена в XVIII в. химиком Дж. Дальтоном. В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии.

Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем (1852 – 1908) было открыто явление радиоактивности. Изучение радиоактивности было продолжено французски­ми физиками супругами П. Кюри (1859-1906) и М. Склодовской-Кюри (1867-1934), открывшими новые радиоактивные элементы полоний и радий.

История исследования строения атома началась в 1895 г. благодаря открытию английским физиком Дж. Дж. Томсоном (1856 – 1940)электрона. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположе­ние о наличии и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Исходя из такой массы положительно заряженной частицы, английский физик У. Томсон (1824 – 1907, с 1892 лорд Кельвин), предложил в 1902 г. первую модель атома: положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг». Однако эта модель не устояла перед опытной проверкой.

В 1908 г. Э. Марсден и X. Гейг ер, сотрудники английского физика Э. Резерфорда, провели опыты по прохождению альфа-частиц через тонкие металлические пластинки и обнаружили, что почти все частицы проходят через пластинку, будто нет препятствия, и только 1/10000 из них испытывает сильное отклонение. Э. Резер­форд (1871-1937) пришел к выводу, что они ударяются о какое-то препятст­вие. которое представляет собой положи­тельно заряженное ядро атома, размер которого (10-12 см) очень мал по сравнению с размерами атома (10-8 см), но в нем почти полностью сосредоточена масса атома.

Модель атома, предложенная Э. Резерфордом в 1911 г.,на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны. Неразрешимое противоречие этой модели заключалось в том, что электроны, чтобы не потерять устойчивость, должны двигаться вокруг ядра. В то же время движущиеся электроны, согласно законам электродинамики, обязательно должны излучать электромаг­нитную энергию. Но в таком случае электроны очень быстро потеряли всю свою энергию и упали бы на ядро.

Следующее противоречие связано с тем, что спектр излуче­ния электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Олднако атомы излучают свет только определенных частот. Планетарная модель атома Резерфорда оказа­лась несовместимой с электродинамикой Дж. К. Максвелла.

В 1913 г.великий датский физик Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой, и основанных на принципе квантования:

1) в каждом атоме существует несколько стационарных орбит электронов, двигаясь по которым, электрон может существовать, не излучая;

2) при переходе электрона с одной стационарной орбиты на другую атом излучает или поглощает порцию энергии.

Постулаты Бора объясняют устойчивость атомов: находя­щиеся в стационарных состояниях электроны без внешней на то причины не излучают электромагнитной энергии. Объясняются и линейчатые спектры атомов: каждой линии спектра соответ­ствует переход электрона из одного состояния в другое.

Теория атома Н. Бора позволяла дать точное описание ато­ма водорода, состоящего из одного протона и одного электро­на, достаточно хорошо согласующееся с экспериментальными данными. Дальнейшее распространение теории на много­электронные атомы столкнулось с непреодолимы­ми трудностями. Длина волны движу­щегося электрона равна примерно 10-8 см, т.е. она того же порядка, что и размер атома. Но движение частицы, принадле­жащей какой-либо системе, можно с достаточной степенью точности описывать как механическое движение материальной точки по определенной орбите, лишь, если длина волны частицы пренебрежимо мала по сравне­нию с размерами системы.

Следовательно, точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует. Вследствие своей волновой природы электроны и их заряды как бы размазаны по атому, однако не равномерно, а таким образом, что в некоторых точках усредненная по времени электронная плотность заряда больше, а в других — меньше.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений.

Элементарные частицы и кварковая модель атома. Дальнейшее развитие идей атомизма было связано с иссле­дованием элементарных частиц. Термин «элементарная частица» первоначально означал про­стейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Ныне установлено, что частицы имеют ту или иную структуру, тем не менее, ис­торически сложившееся название продолжает существовать. В настоящее время открыто бо­лее 350 микрочастиц.

Основными характеристиками элементарных частиц явля­ются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отноше­нию к массе покоя электрона. Существуют элементарные частицы, не имеющие массы покоя, — фотоны. Остальные частицы по этому признаку делятся на лептоны — легкие частицы (электрон и нейтрино); мезоны — средние частицы с массой в пределах от одной до тысячи масс электрона; барионы — тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Считается, что кварки — частицы с дробным электрическим зарядом.

По времени жизни частицы делятся на стабильные (фотон, две разновидности нейтрино, электрон и протон) и неста­бильные. Именно стабильные частицы иг­рают важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около 10-10 — 10-24 с, после чего распадаются. Элементарные частицы со средним временем жизни 10-23 — 10-22 сек. называют резонансами,которые распадаются еще до того, как успеют покинуть атом или атомное ядро. Поэтому зафиксировать их в реальных экспериментах не удается.

Понятие «спина»,не имеющего анало­гов в классической физике, обозначают собствен­ный момент количества движения микрочастицы.

«Квантовые числа» выражают дискретные состояния элементарных частиц, например, положение электрона на конкретной электронной орбите, магнитный момент и др.

Все элементарные частицы подразделяют на два класса — фермионы (названные в честь Э. Ферми) и бозоны (названные в честь Ш. Бозе). Фермио­ны составляют вещество,бозоны переносят взаимодействие,т.е. являются квантами полей. В частности, к фермионам относятся кварки и лептоны, к бозонам — кванты полей (фотоны, векторные бозоны, глюоны, гравитино и гравитоны). Эти частицы считаются истинно элементарными,т.е. далее неразложимыми. Остальные частицы классифициру­ются как условно элементарные,т.е. составные частицы, образо­ванные из кварков и соответствующих квантов полей.

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают четыре вида фундаментальных взаи­модействий в природе.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии порядка 10-13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются мате­риальные системы с высокой энергией связи — атомные ядра. Именно по этой причине ядра атомов являются весьма устой­чивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заря­женным частицам. Носителем электромагнитного взаимодейст­вия является не имеющий заряда фотон — квант электромаг­нитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы — в молекулы. В определенном смысле это взаимодействие являет­ся основным в химии и биологии.

Слабое взаимодействие возможно между различными части­цами. Оно простирается на расстояние порядка 10-13 — 10-22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современ­ным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие — самое слабое, не учиты­ваемое в теории элементарных частиц, поскольку на характер­ных для них расстояниях порядка 10-13 см оно дает чрезвычай­но малые эффекты. Однако на ультрамалых расстояниях (порядка 10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверх­тяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаи­модействие имеет решающее значение. Радиус его действия не ограничен.

Тип взаимодействия Источник взаимодействия Относительная интенсивность взаимодействия Радиус действия силы
Гравитационное Масса ~ 10-38 Сколь угодно далеко
Слабое Все элементарные частицы ~ 10-15 < 10-18 м
Электромагнитное Электрические заряды ~ 10-2 Сколь угодно далеко
Ядерное (сильное) Адроны (протоны, нейтроны, мезоны)   ~ 10-15 м

 

Табл. Фундаментальные взаимодействия

Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира. Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ящерной энергии теплоту и свет. Без электромагнитных взаимодействий не было бы ни ато­мов, ни молекул, ни макроскопических объектов, а также тепла и света. Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фундаментальных взаимодействия можно получить из одного фундаментального взаи­модействия — суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

При энергии в 100 ГэВ (100 млрд. электрон-вольт) объеди­няются электромагнитное и слабое взаимодействия. Такая тем­пература соответствует температуре Вселенной через 10-10 с после Большого взрыва. При энергии 1015 ГэВ к ним присое­диняется сильное взаимодействие, а при энергии 1019 ГэВ про­исходит объединение всех четырех взаимодействий.

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма. В настоящее время считают, что среди множества элементарных частиц можно выделить 12 фундаментальных частиц и столько же античастиц. Шесть частиц — это кварки с экзотическими названиями «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Остальные шесть — лептоны: элек­трон, мюон, тау-частица и соответствующие им нейтрино (электронное, мюонное, тау-нейтрино).

Эти 12 частиц группируют в три поколения, каждое из ко­торых состоит из четырех членов.

В первом – «верхний» и «нижний» кварки, электрон и электронное нейтрино.

Во втором – «очарованный» и «странный» квар­ки, мюон и мюонное нейтрино.

В третьем – «истинный» и «прелестный» кварки и тау-частицы со своим нейтрино.

Все обычное вещество состоит из частиц первого поколения. Предполагается, что остальные поколения можно создать искусственно на ускорителях заряженных частиц.

На основе кварковой модели физики разработали современное решение проблемы строения атомов.

Каждый атом состоит из тяжелого ядра (сильно связанных глюонными полями протонов и нейтронов) и электронной оболочки. Протон имеет положительный электрический заряд, заряд нейтрона равен нулю. Протон из двух «верхних» кварков и одного «ниж­него», а нейтрон — из одного «верхнего» и двух «нижних» кварков. Они напоминают облако с размытыми границами, состоя­щее из рождающихся и исчезающих виртуальных частиц.

Остаются еще вопросы о происхождении кварков и лептонов, о том, являются ли они основными «кирпичиками» при­роды и насколько фундаментальны? Ответы на эти вопросы ищут в современной космологии. Большое значение имеет ис­следование рождения элементарных частиц из вакуума, по­строение моделей первичного ядерного синтеза, породивших те или иные частицы в момент рождения Вселенной.

Вопросы для самоконтроля

1. В чем суть системного подхода к строению материи?

2. Раскройте взаимосвязь микро-, макро- и мегамиров.

3. Какие представления о веществе и поле как видах мате­рии были выработаны в рамках классической физики?

4. Что означает понятие «квант»? Расскажите об основных этапах развития представлений о квантах.

5. Что означает понятие «корпускулярно-волновой дуа­лизм»? Какое значение имеет принцип дополнительности Н. Бора в описании физической реальности микромира?

6. Какова структура атома с точки зрения современной фи­зики?

7. Какое содержание вкладывается в понятие «элемен­тарная частица» в современной физике?

8. Дайте характе­ристику свойствам элементарных частиц.

9. Выделите основные структурные уровни организации ма­терии в микромире и раскройте их взаимосвязь.

10. Какие представления о пространстве и времени сущест­вовали в доньютоновский период?

11. Как изменились представления о пространстве и време­ни с созданием гелиоцентрической картины мира?

12. Как трактовал И. Ньютон время и пространство?

13. Какие представления о пространстве и времени стали определяющими в теории относительности А. Эйн­штейна?

14. Что такое пространственно-временной континуум?

15. Раскройте современные метрические и топологические свойства пространства и времени.

Обязательная:







Дата добавления: 2015-09-04; просмотров: 2099. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия