Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Fundamental Theorems on Limits





Theorem I. The limit of the algebraic sum of finitely many functions equals the sum of the limits of these functions:

 

.

Theorem II. The limit of the product of two functions equals the product of the limits of these functions:

.

Theorem III. The limit of the ratio of two functions equals the quotient of the limits of the numerator and the denominator:

.

Computations of limits. Examples.

I. Limits as x ;.

(1)

The limits in the numerator and the denominator equal zero.

To find the limit of a linear-fractional function, we must divide the numerator and the denominator by х to the maximum power among the powers of x in the numerator and the denominator.

(2)

because х 4 is the maximum power of x in the numerator and the denominator.

(3) (divide by х 2).

A simple method for finding limits of linear-fractional functions as х  is to leave the term containing the maximum power of х in the numerator and the denominator:

4) ,

 

5) ,

 

6) .

 

Let us find limits (1), (2), (3) by the simple method:

,

 

,

 

.

 

Deleting the terms containing lower powers of x from the numerator and the denominator is only possible because, after division by х to the maximum power, the limits of all such terms vanish.

II. Limits as х а. Looking for a limit, first, substitute in the function. If we obtain a number, then this number is the limit of the function. If we obtain one of the indeterminacies ,1, and , then we must eliminate it by transforming the function and then to pass to the limit.

 

(1) ,

 

 

(2) ,

 

(3) ,

 







Дата добавления: 2015-09-04; просмотров: 800. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия