Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНТЕРПОЛЯЦИЯ B-СПЛАЙНАМИ





 

Чуть более сложный тип интерполяции – так называемая полиномиальная сплайн-интерполяция, или интерполяция B-сплайнами. В отличие от обычной сплайн-интерполяции, сшивка элементарных B-сплайнов производится не в точках (ti, хi), а в других точках, координаты которых обычно предлагается определить пользователю. Таким образом, требование равномерного следования узлов при интерполяции B-сплайнами отсутствует и ими можно приближать разрозненные данные.

 
 

Рис. 4. Интерполяция B-сплайнами

 

Сплайны могут быть полиномами первой, второй или третьей степени (линейные, квадратичные или кубические). Применяется интерполяция B-сплайнами точно так же, как и обычная сплайн-интерполяция, различие состоит только в определении вспомогательной функции коэффициентов сплайна.

NURBS

 

Вышерассмотренные методы достаточно просто обобщаются на случай аппроксимации двумерных обводов. Для конструирования криволинейных поверхностей с помощью стандартных параметрических полиномов, полиномов Бернштейна и NURBS в современных системах геометрического моделирования применяют три основных метода:

 

- тензорного произведения (tensor product surfaces);

- каркасный (lofting surfaces);

- булевой суммы (transfinite method).

 

При этом рациональные параметрические кривые Безье являются частным случаем NURBS.

Обобщение методов Безье и B-сплайнов в начале 70-х годов позволило получить одно из мощнейших и универсальных средств геометрического моделирования криволинейных обводов – NURBS- технологию (Non-Uniform, Rational B-Spline) – неравномерный рациональный B-сплайн. Базовая геометрическая фигура (геометрический примитив) используется для описания кривых поверхностей.

На сегодняшний день существует множество способов описания геометрических объектов. Однако с точки зрения соотношения возможностей и затрат вычислительных ресурсов самым мощным инструментом является так называемое NURBS (Non-Uniform Rational, B-Splines) моделирование. В основе метода NURBS лежит описание объектов с помощью так называемых рациональных полиномиальных функций. Этот подход дает максимальную экономию вычислительных ресурсов и абсолютную гибкость в создании объектов произвольной формы.

Модели NURBS создаются из нескольких кривых. При этом для настройки искривления достаточно изменить собственный вес вершин и определить сплайны. Поверхности, построенные на основе NURBS-кривых, называют NURBS-объектами. Они выглядят плавными и сглаженными, легко поддаются редактированию. Просчет таких моделей является более ускоренным, чем традиционных полигональных сетей.

 







Дата добавления: 2015-09-04; просмотров: 1785. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия