Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формулы Рэлея — Джинса





И Планка

Из рассмотрения законов Стефана — Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа fl,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости fl,T принадлежит английским ученым Д. Рэлею и Д. Джинсу(1877—1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы. Формула Рэлея — Джинса для спектральной плотности энергетической светимости черного тела имеет вид

, (15.3)

где <e>=kT — средняя энергия осциллятора с собственной частотой n. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы, поэтому

средняя энергия каждой колебательной степени свободы <e>=1/2(kT).

Как показал опыт, выражение (15.3) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея — Джинса резко расходится с экспериментом, а также с законом Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана — Больцмана (см 15.1) из формулы Рэлея — Джинса приводит к абсурду. Действительно, вычисленная с использованием 15.3 энергетическая светимость черного тела (см. 14.3)

в то время как по закону Стефана — Больцмана величина eT пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». С классической точки зрения вывод формулы Рэлея — Джинса является безупречным. Поэтому расхождение этой формулы с опытом указывало на существование каких-то закономерностей, несовместимых с представлениями классической физики.

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания

e0=hn (15.4)

где h = 6,625.10-34 Дж-с — постоянная Планка. Так как излучение испускается порциями, то энергия осциллятора E может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии E0

(n=1,2,3)

В данном случае среднюю энергию <e> осциллятора нельзя принимать равной kT. Вероятность, что осциллятор находится в состоянии с энергией порциональна , но при вычислении средних значений (при дискретных значениях энергии) интегралы заменяются суммами. При данном условии средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

(15.5)

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

(15.6),

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т.е. при hn<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка 15.6 совпадает с формулой Рэлея —Джинса 15.3. Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:

Подставляя последнее выражение в формулу Планка (15.6), найдем, что

,

т. е. получили формулу Рэлея — Джинса (15.3).

Из формулы Планка можно получить закон Стефана — Больцмана. Согласно 14/13 и 15.6

Введем безразмерную переменную x=hn/(kT); dx=hdn/(kT); dn=kTdx/h, тогда

,

где , так как Таким образом, действительно формула Планка позволяет получить закон Стефана—Больцмана

Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана— Больцмана величину, хорошо согласующуюся с экспериментальными данными.

Закон смещения Вина можно вывести, используя формулу Планка. Значение lmax, при котором функция fl,T достигает максимума, найдем, приравняв нулю производную .

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана — Больцмана s и Вина b. С другой стороны, зная экспериментальные значения s и b можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

 







Дата добавления: 2015-09-07; просмотров: 1763. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия