Круговая (радиальная) хроматография на бумаге
Определение аминокислот
Хроматографирование производят на кружке фильтровальной бумаги диаметром 6-15 см. Из центра круга проводят циркулем окружность с радиусом соответственно 2-5 см. На окружности на расстоянии 1,5 см друг от друга обозначают кружочками места, куда наносят капли исследуемых растворов и растворов «свидетелей». Бумагу высушивают на воздухе, проделывают небольшое отверстие в центре круга и вставляют в отверстие фитиль. Фитилем служит скрученный на тонком стержне полоска фильтровальной бумаги длиной 1,5-2 см. Можно сделать бумажный кружок с фитилем и по-другому: на расстоянии 2 мм друг от друга делают два параллельных разреза от края бумажного кружка до центра, отгибают полоску перпендикулярно плоскости кружка и укорачивают до 1,5-2 см. Затем бумажный кружок кладут на чашку Петри с находящимся в ней растворителем так, чтобы фитиль погружался в растворитель; диаметр бумажного кружка должен быть немного больше диаметра закрываемой им чашки Петри (рис.6). Чашку Петри с растворителем и бумажным кружком помещают заранее в другую чашку Петри большего размера и покрывают второй половиной этой чашки. Растворитель поднимается по фитилю и распространяется радиально по бумажному кружку, продвигая радиально и компоненты исследуемой смеси и «свидетеля». Положение пятна каждого компонента по радиусу зависит от скорости продвижения компонента. Хроматографирование продолжается от 20 мин. до 1-2 часов. Затем бумажный кружок снимают пинцетом, высушивают, опускают в ванночку с реактивом, дающим окрашивание с исследуемым веществом, и точно отмечают карандашом положение компонентов смеси и «свидетелей». Идентификацию вещества производят так же, как это делается в случае восходящей хроматографии и по положению пятен «свидетелей».
3.5. Теоретические основы ионообменного хроматографического анализа Ионообменная хроматография основана на способности некоторых веществ обмениваться содержащимся в них ионами с ионами, находящимися в растворе. Такие вещества называют ионитами или ионообменниками. Иониты могут быть органическими и неорганическими веществами. Из неорганических ионитов наиболее часто используют «оксид алюминия для хроматографии», силикагель, пермутит и др. Из органических ионитов применяют целлюлозу, сульфоуголь и синтетические высокомолекулярные вещества – ионообменные смолы. Способность к ионному обмену определяется строением ионита, представляюшего собой «каркас», на котором закреплены активные группы. Таким образом, ионит можно рассматривать как поливалентный ион с отрицательным или положительным зарядом, связанный ионной связью с подвижным ионом противоположного заряда. Для наглядности ионит можно сравнить с губкой, в парах которой циркулируют противоионы. Если такая губка погружена в раствор, противоионы могут ее покинуть и перейти в раствор. Однако при этом должна сохраниться электронейтральность ионита. Поэтому противоионы смогут перейти в раствор только в том случае, если в губку попадут новые ионы из раствора в количестве, способном полностью компенсировать заряд противоионов, покинувших губку. В зависимости от обмена катионов или анионов иониты делят на катиониты, у которых активными группами являются кислотные группы – SO3H, - COOH и др.; аниониты, у которых активными группами являются основные группы – NH2, = NH, _= N, четвертичные аммониевы и пиридиниевые группировки; амфолиты, способные ить кислотные и основные группы. Иониты классифицируют в зависимомти от степени диссоциации активных групп. Различают 4 группы ионитов. 1. Высококислотные катиониты, содержащие сильнодиссоциирующие кислотные группы – SO3H. К ним относят КУ-1, КУ-2, СДВ, ДАУЭКС-50 и др.; способные к обмену ионов кислой, нейтральной и щелочной средах. 2. Низкокислотные катиониты, содержащие слабодиссоциирующие кислотные группы (-СООН и др.). К ним относят КБ-2, КБ-4 и др.; способные к обмену ионов при рН больше 7. 3. Высокоосновные аниониты, содержащие четвертичные аммониевые или пиридиниевые группировки. К ним относят АВ-17, АВ-18 амберлиты и др., способные к обмену ионов во всех средах. 4. Низкоосновные аниониты, содержащие основные группы - NH2, =NH, _=N. К ним относят АН-23, АН-2Ф и др., способные к обмену ионов только при рН меньше 7. Кроме того иониты подразделяют на монофункциональные, содержащие только одинаковые ионогонные группы и полифункциональные, содержащие одновременно несколько различных групп. Типичные реакции обмена катионов и анионов могут быть представлены уравнениями: 1. RAnH + Na+ = RanNa + H+ (повышается кислотность раствора) 2. RktOH + Cl - = RKtCl + OH – (повышается щелочность раствора) 3. RanNa + K+ = RanK + Na+ 4.RKtCl + NO3- = RKtNO3 + Cl – (изменяется солевой состав раствора) где RAn и RKt – каркас, образующий вместе с ионной группой элементарную ячейку катионита или анионита. Изучение равновесного состояния системы ионит – раствор представляет большой практический и теоретический интерес. Знание изотерм ионного обмена позволяет заранее рассчитывать условия, необходимые для решения практических вопросов применения процесса ионного обмена, например, при разделении смеси ионов методом ионообменной хроматографии. Ионообменное равновесие достигается в результате одновременного действия сил различной природы. В первом приближении оно может быть описано законом действующих масс (ЗДМ) или аналогичными законами. Из уравнения реакции обмена двух одновалентных ионов А и В: A[RAn] + B+ = B[RAn] + A+ (1) Согласно ЗДМ, можно написать: B[RAn][A+] \ A[RAn][B+] = KA,B или B[RAn] \ A[RAn] = KA,B [B+] \ [A+] (2) И если твердую фазу обозначать чертой сверху, то: B \ A = KA,B[B+] \ [A+] (3) Где KA,B – коэффициент избирательности или константа обмена ионов Установление ионообменного равновесия и скорость обмена между двумя фазами связаны с природой ионитов, хроматографируемых веществ и техникой эксперимента. Для выявления оптимальных условий хроматографического разделения ионов большую роль играет коэффициент распределения – КР. Коэффициент распределения определяется отношением ионов в ионите к количеству их в равновесном растворе. Отношение коэффициентов распределения двух разделяемых ионов, найденных в одних и тех же условиях эксперимента, называют коэффициентом распределения обмена ионов. Для разделения необходимо, чтобы коэффициенты распределения резко отличались друг от друга. Если коэффициенты распределения одинаковы, то разделение двух ионов смеси невозможно.
|