Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

для нахождения максимального потока





Данные: транспортная сеть D, заданная матрицей пропускных способностей дуг.

Результат: максимальный поток в сети.

 

1. Построить произвольный поток φ на транспортной сети D (например, положить φ(u) = 0 для любой дуги u).

2. Просмотреть пути, соединяющие вход сети v1 с выходом vn. Если поток φ полный, то перейти к п.4.

3. В противном случае рассмотреть путь μ, соединяющий вход сети v1 с выходом vn, все дуги которого не насыщены. Построить новый поток φ´:

где . Повторить этот процесс до получения полного потока φ.

4. Присвоить целочисленные метки вершинам сети D и знаки «+» или «-» дугам по правилам:

· входу v1 присвоить метку 0,

· если вершина vi получила некоторую метку, а y - еще непомеченная вершина, то вершине y Гvi, такой что φ((vi,y))<c((vi,y)) присвоить метку i, а дуге (vi,y) – знак «+»; вершине y Г-1vi, такой, что φ((y,vi))>0, присвоить метку i, а дуге (y,vi) – «-». Остальные непомеченные вершины и дуги метки и знаки не получают;

· повторять процесс, описанный в предыдущем пункте до тех пор, пока не прекратится появление новых отмеченных вершин и дуг. Если в результате выполнения этого пункта вершина vn не получит метки, то поток является максимальным. В противном случае перейти к п.5.

5. Рассмотреть последовательность отмеченных вершин λ=(vn, vi1, vi2,…,v1), каждая из которых имеет метку, равную номеру последующей вершины, и последовательность μ (не обязательно путь), соединяющих последовательные вершины из λ. Построить новый поток φ´:

Перейти к пункту 4.

 

Пример. Рассмотрим транспортную сеть D и полный поток φ, для которого = 14:

 

2 (1,+)

7 (8) 7 (7)

 

0(1,+) 5 (3,+) 6 (4,+)

1 4 (5) 3 6 (7) 1 (1)

 
 

 


3 (3) 10 (10) 0 (3) 13 (15)

 

4 (5,+) Рис. 1.

 

Присвоим вершине 1 метку 0, тогда вершине 2 присвоим метку (1,+), т.к. φ((1,2))<c((1,2)). Т.к. φ((2,5))=c((2,5)), то переходим к вершине 3, которой присвоим метку (1,+), затем вершине 5 – (3,+), вершине 4 – (5,+), вершине 6 – метку (4,+). Рассмотрим последовательность вершин λ=(6,4,5,2,1), и построим новый поток, величина которого равна 15.

 

2 (1,+)

7 (8) 7 (7)

 

0 5 6

1 5 (5) 3 7 (7) 1 (1)

 


3 (3) 10 (10) 1 (3) 14 (15)

 

4 Рис. 2.

Нетрудно заметить, что улучшить данный поток нельзя.

 

 







Дата добавления: 2015-09-07; просмотров: 427. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия