Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матрица пересечений гипотетического примера





  1 2 3 4 5
1          
2          
3          
4          
5          

 

Напоминаем, что матрица симметрична относительно диагонали. Оцениваем разнородность диагональных элементов. Они одновелики (перепады значений незначительны), следовательно можно применять меры сходства. Для иллюстрации методов сравнительного анализа мы также рассчитаем и матрицу мер включения (как вам уже известно, данная матрица является наиболее информативной относительно степени сходства биологических объектов):

Таблица 3.3

Матрица мер включения гипотетического примера (в %)

  1 2 3 4 5
1          
2          
3          
4          
5          

 

В нашем случае наблюдается очень большое сходство между площадками. При пороге в 100% 1 площадка включается в площадки 2-5, 2 площадка в 5 площадку, 3 площадка в 4-5, 4 в 3 и 5. Представьте эти отношения в виде ориентированного графа и оцените банальность/оригинальность видовых списков. Методом симметризации рассчитаем матрицу мер сходства Сёренсена (напомним, что эта матрица является двойственной матрице мер различия (расстояний), т.е. мера сходства является дополнением до единицы матрицы различия).

Таблица 3.4

Матрица мер сходства Сёренсена гипотетического примера (в %)

  1 2 3 4 5
1   87,5     71,5
2 87,5   67,5 67,5 78,5
3   67,5     85,5
4   67,5     85,5
5 71,5 78,5 85,5 85,5  

 

Определим кластеры с помощью метода арифметического среднего (рис 3.1). Для этого просматривая ячейки сверху вниз и слева направо, ищем максимальное значение сходства (кроме диагональных элементов).

Рисунок 3.1. Дендрограмма, построенная методом среднего арифметического связывания (мера сходства Сёренсена).

Находим на пересечении 3 и 4 площадки 100%. Это наш первый кластер [3, 4]. Все значения матрицы, которые пересекаются с элементами нового кластера пересчитываем как среднее арифметическое этих значений. Например, K1,3=80, K1,4=80, следовательно среднее арифметическое также будет равно 80 (K1[3,4]=80). Аналогично определяем следующие кластеры. Рассчитайте самостоятельно и постройте дендрограмму. Последовательно получим: кластер [1, 2] = 87,5; кластер [[3,4],5] = 85,5. Объединение кластеров происходит на уровне сходства – 74%.

 







Дата добавления: 2015-09-07; просмотров: 566. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия